MCNPX simulation for optimization of efficiency of a 4π neutron detector for beta delayed neutron emission measurements.

V. Gorlychev, M. B. Gómez, R. Caballero-Folch, G. Cortés, F. Calviño, A. Poch, C. Pretel

UNIVERSIDAD POLITÉCNICA DE CATALUÑA

D. Cano, T. Martínez and Nuclear Innovation Group
CIEMAT-Madrid

J.L. Taín, J. Agramunt and Gamma Spectroscopy Group
IFIC- Valencia

September 2009
INDEX

✓ FAIR
✓ DESPEC
✓ Delayed neutron emission
✓ Neutron detector for DESPEC
✓ Prototype of the neutron detector
✓ Test with Cf source
✓ Conclusions
INTRODUCTION

FAIR – Facility for Antiproton and Ion Research.
INTRODUCTION

OBJECTIVES:
• Nuclear structure study;
• Decay properties of exotic isotopes study;
• To study r-process;
• Beta delay neutron emission.

DECay SPECTroscopy.
INTRODUCTION

Beta delay neutron emission scheme
Mechanisms of detecting neutrons are based on indirect methods

\[^3\text{He} + n \rightarrow ^3\text{H} + ^1\text{H} + 765\text{ keV} \]

\[^{10}\text{B} + n \rightarrow ^7\text{Li}^* + ^4\text{He} + 2310\text{ keV (93\%)} \]

\[^{10}\text{B} + n \rightarrow ^7\text{Li} + ^4\text{He} + 2790\text{ keV (7\%)} \]
4π NEUTRON DETECTOR FOR DESPEC

Study of DEcay SPECtroscopy and associated emission

Front view

Ring A: 12 counters @ $R_A = 12$ cm
Ring B: 16 counters @ $R_B = 19$ cm

Beam hole radius: 8 cm
Dimensions: 50x50x80 cm3 + shielding

Side view
Vitaly Gorlychev, Belén Gómez et al.

EFFICIENCY FOR DESPEC DESIGN

Configuration has been optimised in order to get the flattest efficiency possible.

Relative flat efficiency between 0.1MeV-2MeV (41%-44%)

<table>
<thead>
<tr>
<th>Counter</th>
<th>Gas</th>
<th>Max length (mm)</th>
<th>Effective length (mm)</th>
<th>Maximum diameter (mm)</th>
<th>Eff diam (mm)</th>
<th>Gas pressure (torr)</th>
<th>Cathode material</th>
</tr>
</thead>
<tbody>
<tr>
<td>2527 LND inc</td>
<td>3He</td>
<td>686.84</td>
<td>604.8</td>
<td>25.4</td>
<td>24.38</td>
<td>15200</td>
<td>Stainless Steel</td>
</tr>
</tbody>
</table>

MCNPX simulation, 100 000 events
BACKGROUND SHIELDING

Outer layer of polyethylene and Cadmium added in order to shield detector from background neutrons.

Shield of polyethylene

Polyethylene moderator

Cadmium layer

Vitaly Gorlychev, Belén Gómez et al.
15 cm polyethylene shielding seems ok

- 2.5 % detection of 2 MeV neutrons
- No need to add Cadmium according to simulations

Unknown neutron background (!?)

MCNPX simulation, 100 000 events
NEUTRON FLUX AFTER POLYETHYLENE BLOCK

Neutron flux after polyethylene

Neutron flux after polyethylene + Cd
Polyethylene will be vertical slices of ~10cm, when assembled => 90 x 90 x 80 cm³ ~600 kg detector

Support structure requirements:
- Hold and transport 600 kg
- Allow access to the beam hole
- Movable in Z-axis for fine placement
- Adjustable height table + tray with bearing

Polyethylene

3He counters
A prototype with 20 counters is being designed to be tested at JYFL-Finland.

- Ring A: 8 counters @ $R_A = 11\text{cm}$
- Ring B: 12 counters @ $R_A = 20\text{cm}$

Beam hole radius: 5 cm
Dimensions: $50 \times 50 \times 80 \text{ cm}^3 +$ shielding
Relative flat efficiency in the range 0.1 MeV to 4 MeV (32% - 35%)

MCNPX simulation, 100 000 events
MODERATION TIME IN PROTOTYPE

MCNPX simulation, 100 000 events

Efficiency vs neutron propagation time. Neutron point source of 1 MeV. Detector: $R_1=11$ cm, $R_2=20$ cm.
NEUTRON SHIELDING

Shield of polyethylene

Polyethylene moderator

Cadmium layer
Efficiency of background neutron detection. Neutron source is a sphere around the neutron detector.

MCNPX simulation
100 000 events
Equipment:
- Neutron detector – UPC (Barcelona)
- DAQ – IFIC (Valencia)
- NaI(Tl) detector – CIEMAT (Madrid)

252Cf neutron source. Activity:
- Dec. 2007 – 9.9kBq (1100 neutrons/second)
- July 2009 – 605 neutrons/second
Experimental efficiency (29±4)\% corresponds to simulation.

Block of polyethylene 60x50x80 cm\(^3\)
Beam hole \(R = 5\) cm (Shield =10 cm)
\(R_A = 11\) cm, 8 counters of 80 cm effective length
\(R_B = 20\) cm, 12 counters of 60 cm effective length
Counters with \(^{3}\)He, pressure = 15200 torr
Neutron point source
Date: 17.09.2009
Experimental propagation time corresponds to simulation
Decay properties of β delayed neutron emitters ^{87}Br, ^{88}Br, ^{94}Rb, ^{95}Rb, ^{137}I

Three complementary setups to study three aspects: 15 days beam time

- Neutron emission probability (4π neutron detector, UPC)
- Neutron energy (ToF detector, CIEMAT)
- Beta decay energy (Total Absorption Spectrometer, IFIC)
CONCLUSIONS

✓ Prototype simulations were done
✓ Prototype construction was made
✓ First test with Cf source was performed in July 2009
✓ Experimental efficiency corresponds to simulation
✓ Moderation time corresponds to simulation
✓ Support structure was designed and constructed
✓ Test with prototype will be performed in November 2009 in JYFL
NEXT IN THE LIST: Test electronics and counters with a 252Cf source
TEST WITH Cf SOURCE @ UPC

PC DAQ

VME SIS3302 ADC

Preamp

HV

3He counter

3He counter

Amplifiers (STM-16 MESYTEC)
<table>
<thead>
<tr>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>4°</td>
<td>1°</td>
<td>2°</td>
<td>3°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation of detector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definition of counters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronics definition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronics setup and test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prototype construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First tests of prototype</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment JYFL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis of experiment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuning of final design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction of final detector</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Efficiency of background neutron detection. Neutron source is a sphere around the neutron detector.
4π NEUTRON DETECTOR FOR DESPEC

Number of channels = 1
Rise time = 7 ns
Decay time = 140 µs
Gain = 1.4
Power Supply = +/- 12V

V. Gorlychev, M. B. Gómez et al.
UPC, Barcelona
- Detector overview
- Results of simulations with MCNPX
- Prototype design and first experiment
- Status of detector components
- Time planning
DESIGN OF 4π NEUTRON DETECTOR FOR DESPEC

V. Gorlychev, M. B. Gómez, G. Cortés, F. Calviño, A. Poch, C. Pretel

UNIVERSIDAD POLITÉCNICA DE CATALUÑA

December 2008
4π NEUTRON DETECTOR MATERIAL

Pre-amplifiers (CREMAT)

Pre-amplifiers (MPR-16 MESYTEC)

Amplifiers (STM-16 MESYTEC)
4π NEUTRON DETECTOR MATERIAL

TDC (V767 CAEN)

Power Supply (ISEG 203)
NIM crate (WIENER)

20 3He counters (LND)
Delivery shortly
CREMAT PRE-AMPLIFIER TEST

Number of channels = 1
Rise time = 7 ns
Decay time = 140 µs
Gain = 1.4
Power Supply = +/- 12V
CABLE LENGTH TEST

Neutron spectrum for Mesytec pre-amplifier and amplifier chain for different cable length

It seems the cable length does not have large influence