Neutron Cross-Section Measurements from ORELA

K.H. Guber,

Oak Ridge National Laboratory,

Oak Ridge, TN, USA

UT-BATTELLE

OakRidgeElectronLinearAccelerator

- High intensity, pulsed neutron, positron and γ -ray source
- Four section, L-band electron linear accelerator, Peak current: 40 amps, Electron energy: 180 MeV, Rep. rate: 1 -1000 Hz, Pulse width: 2 30 nsec, Power on target: 60 kW maximum
- Neutron production: 10¹⁴ n/sec, 10¹¹ n/pulse, Positron production: 10⁸ e⁺/sec
- Facility capabilities: simultaneous experiments at different flight paths (10), -stations (18), and lengths (9-200m, underground).

OakRidgeElectronLinearAccelerator

- High flux (10¹⁴ n/sec) => gramsized, affordable samples
- Excellent resolution (Åt=2-30 ns)
 => good S/N facilitates better evaluations
- "White" neutron spectrum from $E_n \sim 0.01 \text{ eV} 80 \text{ MeV} => \text{ reduces}$ systematic uncertainties
- Measurement systems and backgrounds well understood => very accurate data
- Simultaneous measurements => (n,γ), (n,α), (n,n'), (n,f), and σ_{total} experiments at the same time on different beam lines
- Measurements on over 180
 Isotopes: ORELA measurements have contributed to ~80% of U.S. Evaluated Nuclear Data File (ENDF/B) evaluations

Experiment Requirements

Duration: ~ week

 $R = n\sigma\phi\epsilon + R_{bkg}$.

Maximize n, ϕ , and ε , minimize R_{bkg}.

Except: minimize n because samples can be expensive (enriched isotopes) and radioactive samples contribute to background. Increasing ε may lead to worse background. Increasing ϕ may lead to counting-rate problems.

Minimize R_{bkg} , especially sample-dependent part. Measure as much as possible (e.g. σ_t , standards).

Experimental Techniques

Туре	White Source	Monoenergetic
Facilities	Van de Graaff, Electron and Proton Linacs, Lead Slowing- Down Spectrometer	Van de Graaff, Reactor, Electron Linac
Pros	All energies at once. Wide energy range. Moderate to high flux. Excellent to modest resolution. Simultaneous experiments. More information (e.g. resonance parameters).	High flux. Simpler experiments. Activation and quasi-Maxwellian spectrum possible.
Cons	Backgrounds may be more troublesome: γ-flash, neutron sensitivity and other sample- dependent backgrounds. More complicated analysis.	Only one energy and one experiment at a time. Poor or no resolution.

Neutron Capture and Total Cross Section Experiments at a White Neutron Source:

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Time-of-flight technique used to determine incident neutron energy. "Clocks" used have typically 1nsec resolution.

Pulsed electron beam starts clock. γ -ray or neutron detector stops clock.

 $v_n = L/t$

$$\mathsf{E}_n = \mathsf{m}_n \mathsf{v}^2 / 2$$

Filters used to reduce frame-overlap background from low-energy neutrons and to reduce γ -flash effects.

Cross-Section Measurement Facilities

Facility Parameters	United States				Europe	
	ORELA	LANSCE	IPNS	RPI	GELINA	n_TOF
Source	e ⁻ linac	p spallation	p spallation	e ⁻ linac	e ⁻ linac	p spallation
Particle E (MeV)	140	800	450	>60	120	20000
Flight Path (m)	10-200	7-55	~6-20	10-250	8-400	185
Pulse Width (ns)	2-30	125	70-80	15-5000	1-2000	7
Max Power (kW)	50	64	6.3	>10	11	45
Rep Rate (Hz)	1-1000	20	30	1-500	Up to 900	0.278-0.42
Best Intrinsic Resolution (ns/m)	0.01	3.9	3.5	0.06	0.0025	0.034
Neutrons/s	1 × 10 ¹⁴	7.5 × 10 ¹⁵	8.1 × 10 ¹⁴	4 × 10 ¹³	3.2 × 10 ¹³	8.1 × 10 ¹⁴

Facilities Comparison for 20m Flight path

	ORELA	GELINA	LANSCE	IPNS	n_TOF
Hypothetical Flight path length [m]	20	20	20	20	20
Pulse width [ns]	24	1	125	80	7
Power [kW]	50	11	64	6.3	45
Repetition Rate [Hz]	1000	800	20	30	0.42
Neutron Flux @ 1keV [neutron/s/cm2/eV]	2.50E+01	1.00E+01	1.20E+02	1.00E+02	2.50E+02
Neutron Flux @ 1keV [neutron/s/cm2]	2.50E+04	1.00E+04	1.20E+05	1.00E+05	2.50E+05
Intrinsic Resolution [ns/m]	1.2	0.05	6.25	4	0.35
Realistic Resolution dE@ 1keV [eV]	0.97	0.98	3.48	2.25	4.49
FOM @ 1keV (Flux/(dE/E)^2) [n/s/cm2]	2.67E+10	2.60E+10	9.93E+09	1.97E+10	1.24E+10

Neutron Cross-Section Measurements In The Resolved Resonance Range

- Neutron flux is important but alone cannot guarantee accurate measurements.
- Neutron Energy resolution is important.
 - Goal to resolve many resonances in order to obtain reliable average resonance parameters. These are important to perform the analysis of the unresolved energy range and statistical model calculations.
 - Resolved resonances help to identify and disentangle isotopic impurities in the sample.
 - Resolved resonances help to apply individual and no average correction to the data (self-shielding, multiplescattering).

Neutron Cross-Section Measurements

Resolved resonances help to apply individual and no average correction to the data (self-shielding, multiplescattering).

High resolution data help to identify and disentangle isotopic impurities. Example: ¹⁹²Pt, one of the rarest isotopes in the world, only 700mg with 57% enrichment.

0.1 Multiple scattering 0.01 100 1000 10000 Energy [eV] **ORELA** Data 40 SAMMY Fit 0 30 92 20 σ(n,γ) [b] 10 1.10 1.12 1.14 1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.30 Neutron Energy [keV] -BAT

Neutron Energy Resolution

- Flight path length, the longer the better.
- Pulse width of the neutron burst, the shorter the better:
 - Typically fixed with spallation sources (tens of ns to hundreds of ns)
 - Linac sources can vary pulse width (1ns up to tens of ns).

Source moderation distance

- The uncertainty of the creation location of the neutron inside the target/moderator has to be taken into account for the resolution function.
- ORELA is an undermoderated source with relatively small neutron production target. Spallation sources are usually optimized for thermal neutron flux, this requires large moderators.
 - The moderation effect put tails on resonances due to delayed neutrons.
 - · Hinders resolution of closely spaced resonances.
 - Produces background in unresolved energy range which cannot be corrected. This effect is of the order of 16% for 20 keV (Coceva et al. 2002) for n_TOF and can not be estimated quantitatively.

Neutron Production GELINA

- e⁻ accelerated to E_{e-,max} ≈ 140 MeV
- (e⁻, γ) Bremsstrahlung in Utarget (rotating & Hgcooled)
- (γ, n), (γ, f) in Utarget
- Low energy neutrons by water moderator in Becanning

Neutron Production GELINA

Average Current Average Electron Energy : 100 MeV	: /5 μΑ
Pulse Width	: 1ns
Frequency	: 40 – 800 Hz
OAK RIDGE NATIONAL LABORATORY	
U. S. DEPARTMENT OF ENERGY	

Neutron Target n_TOF

Old Pb block 80cm

Superior Resolution at ORELA Results in Much Better S/N

Moderation Distance Distribution

Oak Ridge National Laboratory U. S. Department of Energy

- The uncertainty of the creation location of the neutron inside the moderator has to be taken into account for the resolution function.
- This can be quite sizeable for large target and moderator assemblies.
- The effect is that it will put tail on the resonances in the resolved neutron energy region.
- Additionally it will produce a back-ground in the unresolved region which can not be corrected for.
- This effect is of the order of 16% for 20 keV (Coceva et al. 2002) for n_TOF and can not be estimated quantitatively.

UT-BATTELLE

Average Moderation Distance

• Due to moderation the neutron flight path is energy dependent.

 $L(E) = L_0 + \Delta L$

- n_TOF [cm]: $\Delta L = 0.101 \cdot \sqrt{E}$
- ORELA [mm]:

 $\Delta L = 22.1 - 1.6 \cdot \ln E + 0.283 \cdot (\ln E)^2$

The Influence of Resolution

n-TOF (180 m) <-> GELINA (60 m)

P. Schillebeeckx, IRMM

UT-BATTELLE

Doppler - Resolution Broadening @20 m for 241Pu

Trouble with Weighting Functions

- 20% discrepancy found in neutron width of 1.15-keV resonance in Fe measured with C₆D₆ compared to transmission measurements.
 Fe cascade is hard while those for Au and Ag are soft.
- Corvi et al. (1988) showed that measured weighting functions could solve discrepancy.
- Perey et al. (1988) showed that EGS simulations agreed with $^{207}Pb(n,\gamma)$ cascades and that EGS-4 weighting functions also solved Fe discrepancy. Sample and surrounding material was neglected in previous weighting function calculations.

Results for 56 Fe with Weighting Functions for C_6D_6 Detectors

Exp. Type	Lab	Year	Det.Type	WeightF.	$g\Gamma_{n}\Gamma_{\gamma}/\Gamma$	Γ _n
					[meV]	[meV]
Capture	Geel	1991	C ₆ D ₆	Experim.	56.7±1.9	62.9± 2.1
Capture	Harwell	1988	C ₆ D ₆	EGS4	59.5± 3.0	66.4 <u>+</u> 3.3
Capture	Oak Ridge	1988	C ₆ F ₆	EGS4	58.0± 2.9	64.5 <u>+</u> 3.0
Capture	Oak Ridge	1988	C ₆ D ₆	EGS4	56.8± 2.3	63.0± 2.5
Capture	Oak Ridge	1994	C ₆ D ₆	EGS4	55.8±1.7	61.8 ±1.9
Trans- mission	Oak Ridge	1985			55.7±0.8	61.7±0.9

Much of the Old Neutron Data (on Which Current Evaluations Are Based) Are Seriously Incorrect

- Some problems with the old data:
 - Underestimated neutron sensitivity correction
 - Low-energy cut off of 3 keV
 - No high energy (>100 keV) data
 - Incorrect weighting function
 - Poor resolution
 - Poorly characterized samples, i.e. water in the sample

0.15 0.10 0.10 0.10 0.05 0.05 0.05 0.00

Ex: Large neutron sensitivity of older measurements led to many erroneously-large resonance areas in current evaluations.

UT-BATTELLE

Modified capture data measurement system has significantly less structure

New ORELA Weighting Functions Demonstrated to be Accurate to Better Than 3%

Oak Ridge National Laboratory U. S. Department of Energy

Excellent agreement between ORELA C_6D_6 (Koehler *et al.*) and FZK BaF₂ (Voss *et al.*) ^{134,136}Ba(n,γ) measurements.

Hardness of cascade varies considerably from resonanceto-resonance, but no systematic difference between capture kernels observed.

Excellent (<3%) agreement for average cross sections.

New $95Mo(n,\gamma)$ experiments

- AGB stellar models over predict the abundance of ⁹⁵Mo compared to observation in SiC grain which origin from an AGB star where the s-process takes place.
- M. Lugaro et. al. 2003: calculations show a 30% enhancement in the (n,γ) cross section for ⁹⁵Mo would solve the problem.

New ${}^{95}Mo(n,\gamma)$ and σ_T Measurements at the Oak Ridge Electron Linear Accelerator (ORELA)

- ⁹⁵Mo(n,γ) measured using new apparatus on F.P. 6 at 40 m.
 C₆D₆ using PHWT.
 ⁶Li-glass flux monitor.
 Separate background measurements.
 <u>Modified to measure</u> coincidence PH data.
- ⁹⁵Mo σ_t measured on F.P.
 1 at 80 m.
 ⁶Li-glass detector.
 Separate sample-out, CH₂, and Bi measurements.
 Transmission.

Oak Ridge National Laboratory U. S. Department of Energy

"CINDORELA"

Capture of Incident Neutrons Detector at ORELA

New ${}^{95}Mo(n,\gamma)$ and σ_{t} Data from ORELA

Resonance analysis using SAMMY. 318 resonances to 10 keV. Only 106 previously known. Only 32 previous firm J^{π} assignments.

 Transmission data yield parity of resonance if neutron width is large enough.

Transmission = $exp(-n\sigma_{+})$

The Importance of Total Cross Section Data

- More complete resonance parameter data will help improve nuclear statistical model.
- Is indispensable for obtaining the most accurate (n,γ) reaction rates. See resonances not visible in (n,γ) data. Improved self-shielding and multiple scattering corrections.
- Lack of good total cross section data can lead to serious errors in these corrections and hence in the cross sections.

•Ex: ¹¹⁶Sn Use of incorrect neutron widths led to incorrect low-energy cross sections (Wisshak et al.).

The Importance of Total Cross Section Data

- No high-quality σ_t data available previously. Needed for accurate determination of reaction rate from resonance region because measurements made with thick samples.
- Compare results from pulse-height weighting technique to results from 4π BaF₂ detector.

Resonance Self-Shielding Correction

thin <--> thick transmission Determination of statistical factor g

Simplified schematic of neutron transmission

• For transmission, separate measurements of sample in and sample out

$$T = e^{-N\sigma_T d}$$

UT-BATTELLE

New & Improved ORELA Transmission Apparatus

- Transient digitizer (Acqiris DC-270) replaced old CAMAC TDC and several NIM modules.
- Allows simultaneous measurement of time of flight and pulse height Previous system for ⁶Li-glass detector was 1-D (TOF only), and for NE-110 detector had only 4 pulse-height channels.

Allows simultaneous use of both types of detectors.

- Unlimited stops per start Previous system limited to 8 stops/start (LeCroy 4208 TDC)
- Fewer NIM and CAMAC modules Simpler and more reliable

Test of New Transmission Apparatus: ⁹⁵Mo

⁶Li-glass detector at 80 m

ORELA at 525 Hz, 8 ns pulse width and 4 kW power

Computercontrolled cycling between ⁹⁵Mo, blank, Bi, and CH₂ samples

Pulse Height vs. TOF vs. Counts in Region Near "Black" Resonance at 45 eV

(n,α) measurements for explosive nucleosynthesis calculations

- Improve α+nucleus potential for explosive nucleosynthesis calculations
- Compensated ion chamber (CIC) on FP 11, L = 8.9 m CIC suppresses γ flash. Allows measurements to much higher energies, larger samples (10 cm dia.), and high efficiency for measuring small ($\sigma_{ave} \approx 10 \ \mu b$) cross sections ⁶⁴Zn(n,α) meas. in progress

Inside of Main CIC Detector

ORELA capture data for ⁴¹KCl compared to JENDL3.3 Several resonance areas too large (neutron sensitivity) in evaluation

Comparison of SAMMY Fits with ORELA ^{nat}Cl transmission data

Comparison of SAMMY Fits with ORELA ^{nat}Cl capture data

Recent ORELA capture data compared to evaluations Several resonance areas are too large (neutron sensitivity?) and resonances are missing in evaluations

Recent (n,γ) and Transmission for 53Cr

Recent (n,γ) and Transmission for natural Ti

Comparison of the new ORNL ^{58}Ni evaluation with experimental (n, γ) data

Personnel

ORELA Personnel

- ORELA:
 - C. Ausmus, D.R. Brashear, T.S. Bigelow, K.H. Guber, J.A. Harvey, P.E. Koehler, J.A. White, D. Wiarda

Nuclear Data Group:
M. Dunn, G. Arbanas,
K.H. Guber, H. Derrien,
L.L. Leal, N.M. Larson,
R.O. Sayer, D. Wiarda

Summary

Neutron Energy Resolution

- Perform new total and capture cross section measurements for the NCSP, i.e. ⁶³Cu, ⁶⁵Cu,
 - Continue nuclear astrophysics experiments Finish ${}^{95}Mo(n,\gamma)$ and σ_{+} , ${}^{64}Zn(n,\alpha)$ Future experiments include (n,γ) and σ_{+} for ${}^{86,87}Sr$ and ${}^{149}Sm(n,\alpha)$

Capture and transmission are not always complementary

$$\Gamma_{\gamma} << \Gamma_{n} \qquad \qquad \Gamma_{\gamma} >> \Gamma_{n}$$
• Capture (thin): $A_{\gamma} \propto ng \frac{\Gamma_{n} \Gamma_{\gamma}}{\Gamma} \qquad \propto ng \Gamma_{\gamma} \qquad \qquad \propto ng \Gamma_{n}$

• Transmission (thin):
$$A_{t,thin} \propto ng\Gamma_n \qquad \propto ng\Gamma_n$$

complementary

combine capture and transmission measurements with different sample thicknesses

