

Model defects for nuclear data evaluation

St. Gundacker H. Leeb

Vienna University of Technology Atominstitut of the Austrian Universities, Vienna, Austria

- -) Energy range of evaluated files normally limited up to 20 MeV
- -) novel nuclear technologies and radioactive waste incineration methods require extension to higher energies
- -) in general nuclear data evaluation is a statistical process within BAYESIAN statistics
- -) unfortunately experimental data is scarce for neutron induced reactions at higher energies
- -) PRIOR becomes important due to scarcity of data
- -) Model defects cause great impact on prior

Bayes theorem

Bayesian statistics:

sum rule: $p(\underline{x}|M) + p(\overline{\underline{x}}|M) = 1$ product rule: $p(\underline{x}|\underline{\sigma}M) p(\underline{\sigma}|M) = p(\underline{\sigma}|\underline{x}M) p(\underline{x}|M)$

$p(\underline{x}|\underline{\sigma}M)$

.... probability distribution of parameters \underline{x} for a given model M and data $\underline{\sigma}$

$$p(\underline{\sigma}|\underline{x}M)$$

.... probability distribution of data $\underline{\sigma}$ for a model M with parameters \underline{x}

 $p(\underline{x}|M)$

^{....} probability for the ocurence of <u>x</u> when M is true

The contributions to the covariance matrix of the model are:

The contributions to the covariance matrix of the model are:

$$M^{(mod)} = M^{(par)} + M^{(num)} + M^{(def)}$$

- -) cannot be determined within the considered nuclear model
- -) It is requiered to involve experimental data in the procedure.
- -) Only corresponding data from neighbouring nuclei is considered.

The basic idea is to introduce an overall scaling factor:

$$\boldsymbol{D}^{(c)} = \frac{1}{N} \sum_{n=1}^{N} \left\langle \boldsymbol{D}_{n}^{(c)} \right\rangle$$

for the reaction channel c

which is a mean quotient between experiment and theory $\frac{O}{mod}$

energy independent scaling factors => deficiencies of model are directly reflected

Formulation of model defects

scaling factor in the energy bin M

$$\langle D_n^{(c)}(E_m) \rangle = \sum_{j \in E_{bin}(m,n)} w_j^{(c,m,n)} \frac{\sigma_{ex}^{(c)}(E_j)}{\sigma_{th}^{(c)}(E_j)}$$

scaling factor per isotope:

$$\left\langle D_{n}^{(c)}\right\rangle = \sum_{m=1}^{M} w_{m}^{(c,n)} \left\langle D_{n}^{(c)}(E_{m})\right\rangle$$

 $w_{m}^{(c,n)} = \frac{\sigma_{th}^{(c,n)}(E_{m})}{\sum_{m' \in E_{bin}} \sigma_{th}^{(c,n)}(E_{m'})}$

$$w_{j}^{(c,m,n)} = \frac{\sigma_{th}^{(c,n)}(E_{j})}{\sum_{j' \in E_{bin}(m,n)} \sigma_{th}^{(c,n)}(E_{j'})}$$

covariance matrix due to model defects we define by:

$$\begin{split} \left\langle \Delta^{(c)}(E_{m})\Delta^{(c')}(E_{m'})\right\rangle &= \sigma_{th}^{(c)}(E_{m})\sigma_{th}^{(c')}(E_{m'}) \\ &\cdot \frac{1}{\sqrt{N^{(c)}(E_{m})}\sqrt{N^{(c')}(E_{m'})}} \sum_{n=1}^{N} \left\{ \left[\left(\left\langle D_{n}^{(c)}(E_{m}) \right\rangle - D^{(c)} \right) \left(\left\langle D_{n}^{(c')}(E_{m'}) \right\rangle - D^{(c')} \right) \right] \\ &+ \delta_{cc'} \delta_{mm'} \left[\left\langle \left(D_{n}^{(c)}(E_{m}) \right)^{2} \right\rangle - \left(\left\langle D_{n}^{(c)}(E_{m}) \right\rangle \right)^{2} \right] \right\} \end{split}$$

- -) it's an assumption
- -) that formulation is of non-statistical nature!

$$\begin{split} \left\langle \Delta^{(c)}(E_{m})\Delta^{(c')}(E_{m'})\right\rangle &= \sigma_{th}^{(c)}(E_{m})\sigma_{th}^{(c')}(E_{m'}) \\ & \cdot \frac{1}{\sqrt{N^{(c)}(E_{m})}\sqrt{N^{(c')}(E_{m'})}} \sum_{n=1}^{N} \left\{ \left[\left(\left\langle D_{n}^{(c)}(E_{m}) \right\rangle - D^{(c)} \right) \left(\left\langle D_{n}^{(c')}(E_{m'}) \right\rangle - D^{(c')} \right) \right] \\ & + \delta_{cc'} \delta_{mm'} \left[\left\langle \left(D_{n}^{(c)}(E_{m}) \right)^{2} \right\rangle - \left(\left\langle D_{n}^{(c)}(E_{m}) \right\rangle \right)^{2} \right] \right\} \end{split}$$

First term expresses systematical errors, represents the correlations

$$\begin{split} \left\langle \Delta^{(c)}(E_{m})\Delta^{(c')}(E_{m'})\right\rangle &= \sigma_{th}^{(c)}(E_{m})\sigma_{th}^{(c')}(E_{m'})\\ &\cdot \frac{1}{\sqrt{N^{(c)}(E_{m})}\sqrt{N^{(c')}(E_{m'})}} \sum_{n=1}^{N} \left\{ \left[\left(\left\langle D_{n}^{(c)}(E_{m}) \right\rangle - D^{(c)} \right) \left(\left\langle D_{n}^{(c')}(E_{m'}) \right\rangle - D^{(c')} \right) \right] \right. \\ &\left. + \delta_{cc'} \delta_{mm'} \left[\left\langle \left(D_{n}^{(c)}(E_{m}) \right)^{2} \right\rangle - \left(\left\langle D_{n}^{(c)}(E_{m}) \right\rangle \right)^{2} \right] \right\} \end{split}$$

 $N^{(c)}(E_m)$ is the number of isotopes for which $\langle D_n^{(c)}(E_m) \rangle$ can be evaluated

chosen normalization accounts for nonstatistical nature of the formulation

$$\begin{split} \left\langle \Delta^{(c)}(E_{m})\Delta^{(c')}(E_{m'}) \right\rangle &= \sigma_{th}^{(c)}(E_{m})\sigma_{th}^{(c')}(E_{m'}) \\ &\cdot \frac{1}{\sqrt{N^{(c)}(E_{m})}\sqrt{N^{(c')}(E_{m'})}} \sum_{n=1}^{N} \left\{ \left[\left(\left\langle D_{n}^{(c)}(E_{m}) \right\rangle - D^{(c)} \right) \left(\left\langle D_{n}^{(c')}(E_{m'}) \right\rangle - D^{(c')} \right) \right] \\ &+ \delta_{cc'} \delta_{mm'} \left[\left\langle \left(D_{n}^{(c)}(E_{m}) \right)^{2} \right\rangle - \left(\left\langle D_{n}^{(c)}(E_{m}) \right\rangle \right)^{2} \right] \right\} \end{split}$$

$$\left\langle \left(D_n^{(c)}(E_m) \right)^2 \right\rangle = \sum_{j \in E_{bin}(m,n)} w_j^{c,m,n} \left(\frac{\sigma_{ex}^{(c)}(E_j)}{\sigma_{th}^{(c)}(E_j)} \right)^2$$

Second term is a real covariance term as defined in statistics due to fluctuations of the experimental data

$$\begin{split} \left\langle \Delta^{(c)}(E_{m})\Delta^{(c')}(E_{m'})\right\rangle &= \sigma_{th}^{(c)}(E_{m})\sigma_{th}^{(c')}(E_{m'}) \\ &\cdot \frac{1}{\sqrt{N^{(c)}(E_{m})}\sqrt{N^{(c')}(E_{m'})}} \sum_{n=1}^{N} \left\{ \left[\left(\left\langle D_{n}^{(c)}(E_{m}) \right\rangle - D^{(c)} \right) \left(\left\langle D_{n}^{(c')}(E_{m'}) \right\rangle - D^{(c')} \right) \right] \\ &+ \delta_{cc'} \delta_{mm'} \left[\left\langle \left(D_{n}^{(c)}(E_{m}) \right)^{2} \right\rangle - \left(\left\langle D_{n}^{(c)}(E_{m}) \right\rangle \right)^{2} \right] \right\} \end{split}$$

Correlations are defined in the usual way:

$$C^{(cc')}(E_m, E_n) = \frac{\left\langle \Delta \sigma^{(c)}(E_m) \Delta \sigma^{(c')}(E_n) \right\rangle}{\sqrt{\left\langle \Delta^2 \sigma^{(c)}(E_m) \right\rangle} \sqrt{\left\langle \Delta^2 \sigma^{(c')}(E_n) \right\rangle}}$$

Used Data

EFNUDAT 2009, St. Gundacker, H. Leeb

- -) optical potential (Koning and Delaroche) and level densities (CTM - TALYS) were optimised
- because global parameters in TALYS are optimised from A=12 to 339
- -) secures that no exp. information of ⁵⁵Mn goes into global parametrisation
- -) we have obtained a slightly different parametrisation

lane term in neutron opt. model:	level density parameters for CTM model:
$d_1 = 19.59 - 64.95 \frac{N - Z}{A}$	$\alpha = 0.026220$ $\beta = 0.270416$ $\gamma_1 = 0.456296$
$d_1 = 16.0 - 16.0 \frac{N - Z}{A}$ TALYS	$\alpha = 0.0207305$ $\beta = 0.229537$ $\gamma_1 = 0.473625$

Around Mn55

EFNUDAT 2009, St. Gundacker, H. Leeb

Uncertainties due to model defects

overall scaling factor (n,tot): 1.013

EFNUDAT 2009, St. Gundacker, H. Leeb

Correlation Matrix n,tot with n,tot

EFNUDAT 2009, St. Gundacker, H. Leeb

Uncertainties due to model defects

overall scaling factor (n,el): 1.004

overall scaling factor (n,2n): 0.980

overall scaling factor (n,inl): 1.002

EFNUDAT 2009, St. Gundacker, H. Leeb

Correlation Matrix n,inl with n,inl

Correlation Matrix n,2n with n,2n

Correlation Matrix n, inl with n, 2n

Uncertainties due to model defects

overall scaling factor (n,α) : 0.899

overall scaling factor (n,p): 1.068

EFNUDAT 2009, St. Gundacker, H. Leeb

Correlation Matrix n,α with n,α

Correlation Matrix n,p with n, α

- -) calculation of parameter uncertainties are in progress
- -) Full prior is starting point for Bayesian update procedure together with exp. information of Mn55
- -) errors will go down, if good experimental data available
- evaluation of ⁵⁵Mn which will be performed in our workgroup under the supervision of Prof. H. Leeb in Vienna

Thank you for your attention!

EFNUDAT 2009, St. Gundacker, H. Leeb