## Slow neutron facilities at the National Physical Laboratory, UK

24 September 2009

#### N.P. Hawkes, P. Kolkowski, D.J. Thomas



#### **Bushy House**



NPL was founded in 1900 in a former royal residence



#### **New laboratories**



Completed in stages between 2000 and 2009



# Neutron facility



#### **Chadwick Building**



#### 3.5 MV Van de Graaff accelerator



Showing ion source, pulser and accelerator tube



## **Experimental area**



Showing low scatter area, thermal pile and water bath



## **Thermal Pile**





#### Graphite block about 2.8 m long by 1.4 m wide by 1.6 m high









## Data for NPL Thermal Pile

#### Central cavity:

- Isotropic field
- Up to 1.2 x 10<sup>7</sup> cm<sup>-2</sup> s<sup>-1</sup> (research reactor: 10<sup>12</sup> cm<sup>-2</sup> s<sup>-1</sup> or more)
- Max. dia. of object: 119 mm
- Typical Cd ratio 33

Thermal column:

- Beam geometry
- Up to 4 x 10<sup>4</sup> cm<sup>-2</sup> s<sup>-1</sup> (1 mSv h<sup>-1</sup>)
- Column dia. 300 mm (larger objects can be placed on top)
- Typical Cd ratio 6.5



## Measurement on thermal column



## Monitoring the fluence delivered

- Fission chambers are built in to the pile, but are only used as an indication.
- Precise measurement is by gold foil activation followed by off-line β– counting in a 4π low background β–counter



National Physical Laboratory

## Water bath



- Cylindrical body of water, 2.4 m high by 2 m diameter.
- Liquid more difficult to build with, and flux depression effects larger.
- But epithermal field follows 1/E dependence more closely than Thermal Pile (1/(E<sup>1.05</sup>)).



National Physical Laboratory

#### Inside the water bath



#### Inside the water bath



#### Previous nuclear data measurements

Between 1970 and 1974 these facilities were used to measure thermal neutron capture cross sections and / or resonance integrals of: <sup>107</sup>Ag, <sup>109</sup>Ag, <sup>27</sup>Al, <sup>75</sup>As, <sup>37</sup>Cl, <sup>63</sup>Cu, <sup>65</sup>Cu, <sup>164</sup>Dy, <sup>151</sup>Eu, <sup>69</sup>Ga, <sup>71</sup>Ga, <sup>165</sup>Ho, <sup>139</sup>La, <sup>23</sup>Na, <sup>93</sup>Nb, <sup>196</sup>Pt, <sup>198</sup>Pt, <sup>159</sup>Tb, <sup>51</sup>V, <sup>89</sup>Y.



#### Activity measurement



Where β counting efficiency of sample is known:

 $4\pi$  low-background windowless  $\beta$ counter.



#### Activity measurement



Where the induced activity is high enough:

4πβ-γ counting.



#### Activity measurement

 The laboratories of the NPL Radioactivity Group are close by. They have specialised facilities that can help with non-standard or difficult measurements.



## Conclusions

- The NPL Neutron Metrology Group has a 3.5 MV Van de Graaff accelerator and a range of experimental facilities.
- Well-characterised neutron fields can be produced in the fast, epithermal and thermal energy regions.
- These can be used for calibrations, activations, reactor instrument testing, and cross section measurements.

