Determination of the total neutron capture cross-section for ⁵⁸Ni(n,γ)⁵⁹Ni reaction

Z. Kis, T. Belgya, L. Szentmiklósi, F. Gunsing

Institute of Isotopes, Budapest CEA/Saclay, Gif-sur-Yvette

Theoretical issues

- Methods for determining the total neutron capture cross section
- Determining the partial γ -ray production cross sections
- Calculation of relative efficiency based on new intensities of ¹⁴N(n,γ)¹⁵N reaction
- ⁵⁸Ni(n,γ)⁵⁹Ni measurement and its evaluation
- Results and comparison with former measurements

Total neutron capture cross section

Method

PM

Equation

 $\sigma_{th} = \sum_{f=1}^{n-1} (1 + \alpha_f) (1 + PCC_f) \cdot \sigma_{\gamma(CS \to f)}$

S
$$\sigma_{th} = \sum_{i=0}^{n} (1 + \alpha_i)(1 + PCC_i) \cdot \sigma_{\gamma(i \to G)}$$

l=2

Inv Q
$$\sigma_{th} = \sum_{i} \frac{E_i}{B_n} \cdot (1 + \alpha_i)(1 + PCC_i) \cdot \sigma$$

The sum of all primary transitions from the capture state can be used for nuclei with relative simple decay scheme. Conversion coefficients must be known.

Notes

The sum of all ground state transitions can be used for nuclei with relative simple decay scheme. Conversion coefficients must be known.

The energy weighted sum can be used for any nuclei with resolved gammatransitions. E_i is the energy of the transition, B_n is the binding energy.

Key quantities: partial gamma-ray production cross sections (σ_{v})

Partial γ-ray production cross section

Comparator method (based on PGAA standardization):

partial gamma-ray production cross section for C (from standardization) rate of counts at a given gamma energy for X and C

$$\sigma_{X\gamma} = \sigma_{C\gamma} \frac{A_{X\gamma}}{A_{C\gamma}} \frac{n_{C}}{n_{X}} \frac{\varepsilon(E_{C\gamma})}{\varepsilon(E_{X\gamma})} \frac{f(E_{C\gamma})}{f(E_{X\gamma})}$$

- number of atoms X and C must be known with high accuracy
- integers for chemical compounds (stochiometry)
- relative efficiency is needed only
 less uncertainty
- different self-absorption for gammas
 same self-shielding for neutrons

Internal comparator method (in our case $C = X = 5^8 Ni$):

• C and X are the same \rightarrow n_c = n_X

• Cross section by internal calibration (from standardization for γ = 464.9 keV)

- $\sigma_{C_{\gamma}}({}^{58}Ni) = \sigma_{C_{\gamma}}(elemental) / isotopic abundance × enrichment =$
 - = 0.843 b / 0.68077 × 0.995 = 1.232 b

Results of CIS method for intensities of $^{14}N(n,\gamma)^{15}N$

Jurney, Phys.Rev. C56(1),118 (1997)

Intensity ratio =

Belgya, Phys.Rev. C74,024603 (2006)

Efficiency values according to which intensity set is used:

 \rightarrow

- if Jurney > Belgya
- if Jurney < Belgya</p>

- higher efficiency if using I, from Belgya
- lower efficiency if using I_v from Belgya

Relative efficiency and its uncertainty

 efficiency is needed for a wide energy range:

- ~50 keV ~12 MeV
- radioactive sources (²²⁶Ra, ²⁰⁷Bi, ¹⁵²Eu)

(n,γ) reactions with well known intensities (e.g. ¹⁴N)
 Hypermet-PC

uncertainty of rel. efficiency:

- below 1% for a wide range (85 keV – 7.5 MeV)
- correlation between efficiency values

 unc. of relative eff. is zero at the pivot energy (464.9 keV)

Ni-58 measurement

- Sample description
- Measurement conditions
- Data evaluation
- Results
- Comparison

Recent sample for 58**Ni**(n, γ)⁵⁹**Ni experiment**

Pressed metal target
Enriched in ⁵⁸Ni : 99.5 %
m = 2.0679 g
Diam = 20 mm
Thickness = 0.77-0.78 mm
– some surface depression

Experimental conditions at the PGAA station

- Beam cross section (max): ≤ 2 × 2 cm²,
 Beam cross section (used): 10 mm²
 Thermal-eq. flux at target: ~1.2×10⁸ cm⁻²s⁻¹
- Vacuum in target chamber: ~1 mbar
- γ-ray detector:

n-type coax. HPGe, with BGO shield in Compton-suppr. mode

Identification of peaks and attenuation correction

Identifying peaks from ⁵⁸Ni(n,γ)⁵⁹Ni :

- elimination: SE, DE, bkg and other nuclides
- other isotopes of Ni: ⁶⁰Ni found, but only in low amount
- trace elements (not found)

Correction for attenuation

- comparator method + homogeneous sample:
- self-shielding for neutrons cancels
- self-absorption for gammas only

Identification of peaks from other nuclides in the sample

- comparison of two spectra with GammaView:
 - separate spectra for ⁵⁸Ni(n,γ)⁵⁹Ni and ⁶⁰Ni(n,γ)⁶¹Ni
 - strongest line of ⁶⁰Ni is at 282.9 keV
 - scale factor: 0.004
 - amount of ⁶⁰Ni in the ⁵⁸Ni sample is about 0.4 n%
- others < 0.1 n%

Results for σ_{th} using the two sets of ¹⁴N intensities

Primary transitions:

- 55 of 57 (Raman's) primary found
- not found:
 - σ_γ(5585.2 keV) = 0.70 mb
 - σ_γ(7050.1 keV) = 0.43 mb

Ground state transitions:

- 42 of 44 (Raman's) ground state found
- not found:
 - σ_γ(6279 keV) = 0.38 mb
 - σ_γ(6872.8 keV) = 0.63 mb

Inverse Q-value test (pri + sec):

 430 transitions found > 414 (Raman's)

⁵⁸ Ni(n,γ) ⁵⁹ Ni	σ _{th} (b)	
	Jurney ¹⁴ N	Belgya ¹⁴ N
Primary	4.06 ± 0.05	4.24 ± 0.05
Ground state	4.21 ± 0.05	4.31 ± 0.05
Inverse Q	4.10 ± 0.05	4.27 ± 0.05
mo fluctua	less fluctuation	

Identifying PM and GS transitions: Raman, Phys Rev C 70, 044318 (2004)

Cumulative Xsecs of inverse Q, GS and PM transitions using Jurney's and Belgya's ¹⁴N(n,γ) intensities

• Reasons of fluctuation:

- energy sampling of methods:
 - PM: more in *higher* energy range
 - GS: more in *lower* energy range
 - InvQ: more uniform
- diff. mainly at higher energy when cumulating (e.g. @ 8999 keV)
- differences: PM > InvQ > GS

Former results

Mughabghab (evaluated): σ_{th} (Ni-58) = 4.37 ± 0.1 b

Xsec (b)	Err (b)	Author	Source	Sample	Monitor
4.13	0.05	Raman, 2004	MXW th n flux: 6E11	99.93 % enriched 58NiO	 en cal: melamine (C₃H₆N₆) int cal: rad sources and ¹⁴N(n,γ)¹⁵N
4.4	0.2	Venturini, 1997	MXW th n flux: 5E11	Mixture: melanine + nat Ni	 en cal: melamine (C₃H₆N₆) int cal: rad. sources and ¹⁴N(n,γ)¹⁵N
4.6	0.3	Weselka, 1991	MXW th n flux: 3.9E17	Foil of 4.8 mg/cm2	Activation: Ni-58 and Fe-54
4.52	0.1	Carbonari, 1988	MXW th n flux: 5.2E11	Mixture: melanine + natural Ni	en and int cal: ¹⁴ N(n,γ) ¹⁵ N and ³⁵ Cl(n,γ) ³⁶ Cl
4.5		Ishaq, 1977	MXW th n flux: 5E12		en and int cal: ¹⁴ N(n,γ) ¹⁵ N
4.4		Gippner, 1971	Th beam. No details	Natural nickel	
4.2	0.34	Pomerance, 1952	Pile oscillator	Enriched Ni, NiO	Activation: Au-197

All results but Pomerance and Weselka were based on ¹⁴N(n,γ)¹⁵N intensities: e.g. Jurney et al., Phys.Rev. C56(1) (1997)

Estimation for total capture cross section

- σ_{th} is a lower limit:
 - we cannot claim that we have detected all possible γ -rays
- Estimation for missing part of σ_{th} based on primaries:
 - Max. value of transitions not seen among primaries?
 - Smallest $\sigma_{\gamma i}$ measured: ~0.00053 b ("worst case scenario": overestimation)
 - Number of transitions not seen among primaries?
 - E1 transitions from 1/2+ to 1/2- and 3/2- are the most probable
 - Based on theoretical level densities, the number of 1/2- and 3/2- levels: ~350
 - Max. part of σ_{th} not seen: 350 × 0.00053 b = ~0.19 b
 - More sophisticated: e.g. Dicebox

Estimation for total σ_{th} based on primaries: $\sigma_{th} = \sigma_{th}$ (seen) + σ_{th} (not seen) = 4.24 + 0.19 = 4.43 b

Thank you for your attention!