

Nuclear data measurements with slow neutrons at Institut Laue Langevin

Ulli Köster Institut Laue Langevin, Grenoble, France

Institut Laue Langevin

- founded 1967
- today 13 member states: F, D, UK, E, CH, A, I, CZ, S, HU, B, SK, DK
- operates 58 MW high flux reactor with most intense extracted neutron beams
- over 40 instruments, mainly for neutron scattering
- user facility: 2000 scientific visitors from 45 countries per year
- Director General: Richard Wagner
- "Nuclear data instruments": LOHENGRIN, GAMS, PF1, S18, (V4),...

The LOHENGRIN fission fragment separator

Is a 36 year old nuclear physics instrument still competitive?

Fission yield measurements

Mass identification with ionization chamber

Distributions in E and q

A = 98

A = 136

Kinetic energy distributions

Mass yields

Measurement of isotopic yields

Isotopic yields

Fission yield measurements

Measurement of mass and isotopic yields of heavy fission fragments:

²³⁹Pu(n,f) Adeline Bail, PhD thesis, Univ. Bordeaux, 2009.

Recent improvements:

- powerful Ge detectors
- new high voltage system
- independent monitoring of high voltage stability
- automated scans
- semi-automatic analysis

Future plans: ²³³U(n,f), ²⁴¹Pu(n,f),...

Detection of rare ternary particles

Gamma decay of 7.6 μ s ⁹⁸Y isomer

Energy (keV)

Counts

17⁻ isomer at 6.6 MeV in ⁹⁸Zr

(17)

(13)

 (11^{-})

(9

 (7^{-})

5

5

3

 0^+

820.4

804.3

717.7

622.6

511.9

994.2^{1258.2}

776.0

4⁺

583.2

(15)

Z identification with specific energy loss

						<u>¹³⁴Xe</u>		¹³⁶ Xe		
										<u>138</u>
		¹²⁸ Te		¹³⁰ <u>Te</u>		<u>¹³²Te</u>			¹³⁵ Te	
		¹²⁷ Sb		¹²⁹ Sb	<u>¹³⁰Sb</u>	<u>¹³¹Sb</u>		<u>¹³³Sb</u>		¹³⁶ <u>Sb</u>
¹²⁴ Sn	<u>¹²⁵Sn</u>	¹²⁶ Sn	<u>127Sn</u>	¹²⁸ Sn	<u>129Sn</u>	¹³⁰ Sn		¹³² Sn		
<u>123In</u>		¹²⁵ In	¹²⁶ In	<u>¹²⁷In</u>	¹²⁸ In	<u>¹²⁹In</u>	<u>¹³⁰In</u>			
			¹²⁵ Cd							

¹³⁶Sb isomer at LOHENGRIN

G. Simpson et al., Phys. Rev. C 76 (2007) 041303(R).

Identification of nanosecond isomers using their ionic charge distribution in the mass spectrometer

Thomas Materna et al, Fission 2009, Cadarache.

Measurement of P_n values

Analysis of the β and n decay required to discriminate other emitters

New neutron detector design for LOHENGRIN

Simulations with MCNP code

New neutron detector

June 2009:

- first use of the long-counter
- P_n measurement at Lohengrin

Future:

- improved shielding against background
- improved beta detectors
- measurement of Y*P_n for very neutron-rich isotopes

Ludovic Mathieu et al., CEA Cadarache > CENBG

Nuclear chart at ISOLDE

⁵⁸Fe(n, γ)⁵⁹Fe(n, γ)⁶⁰Fe and ⁶²Ni(n, γ)⁶³Ni(n, α)⁶⁰Fe

Cu 61. 3,4 h	Cu 62 9,74 m	Cu 63 69,17	Cu 64 12,700 h	Cu 65 30,83	Cu 66 5,1 m	Cu 67 61,9 h
β ⁺ 1,2 γ 283; 656; 67; 1186	β ⁺ 2,9 γ (1173)	or 4,5	ε; β 0,6 β ⁺ 0,7 γ (1346) σ ~ 270	σ2,17	β 2,6 γ 1039; (834) σ 140	β [–] 0,4; 0,6 γ 185; 93; 91
Ni 60 26,223	Ni 61 1,140	Ni 62 3,634	Ni 63 100 a	Ni 64 0,926	Ni 65 2,52 h	Ni 66 54,6 h
σ 2,9	σ2,5	o r 15	β ⁼ 0,0 noγ σ 2	σ1,5 o	γ 1482; 1115; 366 σ 22	β 0,2 no γ
Co 59 100	CO 60 10,5 m 5,272 a 8° 0.3	Co 61 1,65 h	CO 62	Co 63 27,5 s	Co 64 0,3 s	Co 65 1,14 s
or 20,7 + 16,5	e ⁻ β ⁻ γ (1332) σ 58 σ 2,0	β 1,2 γ 67; 909	$\begin{array}{cccc} \beta^{-} 2.9 & \beta^{-} 4.1 \\ \gamma 1173; & \gamma 1173; \\ 1163; & 2302; \\ 2003 & 1129 \end{array}$	β 3,6 γ 87; 982	β 7,0 γ 1346; 931	β 6,0 γ 1142; 311; 964
Fe 58 0,28	Fe 59 44,503 d	Fe 60 1,5 · 10 ⁶ a	Fe 61 6,0 m	Fe 62 68 s	Fe 63 6,1 s	Fe 64 2,0 s
σ 1,3	β [−] 0,5; 1,6 γ 1099; 1292 σ ≈ 6	β 0,1 m	β 2,6; 2,8 γ 1205; 1027; 298	β 2,5 γ 506 9	β ⁺ 6,7 γ 995; 1427; 1299	β ⁻ γ 311
Mn 57 1,5 m	Mn 58 65,3 s 3,0 s	Mn 59 4,6 s	Mn 60	Mn 61 0,71 s	Mn 62 0,88 s	Mn 63 0,25 s
β 2,6 γ 14; 122; 692	$\begin{array}{c c} \beta^{-}3,9\\ \gamma811;\\ 1323\\ l\gamma72;e^{-}\end{array} \begin{array}{c} \beta^{-}6,1\\ \gamma1447;\\ 2433\end{array}$	β 4,4; 4,8 γ 726; 473; 571	6,1 γ 824; 1969 β ŀγ 272 no γ	β 6,4 γ 629; 207	β γ 877; 942; 1299; 1815	β > 3,7 γ 356

⁶⁴Ni level scheme S_n = 9658 keV

8240 keV

0 keV

CITATION: Nuclear Data Sheets (1996) From NNDC(BNL) program ENSDAT

^{nat}Ni(n, γ)(n, α)

E(MeV)

^{nat}Ni(n, γ)(n, α)

After irradiation to 10²² n/cm² off-line analysis of ⁶⁰Fe content by accelerator mass spectrometry $\Rightarrow \mu$ barn sensitivity

(n, α) spectroscopy with LOHENGRIN

Identification of ^{152g}Eu(n,p₁) and ^{152m}Eu(n,p₀)

Intense ⁷Be beam at ISOLDE

PSI: 2 mA 590 MeV protons onto graphite target for pion production

Spallation products

Procedure

- 1. Break graphite into pieces
 - 2. Put into Pb-shielded container
 - 3. Transport to ISOLDE
- 4. Fill ISOLDE target container
 - 5. Heat container to 1700 ℃
 - 6. Ionize Be with RILIS

⁷Be(n,p) spectrum measured at neutron beam

⁷Be(n,p) measured at LOHENGRIN

LOHENGRIN use

The GAMS spectrometers

Ultra High Resolution Gamma Spectroscopy

Double Flat Crystal Spectrometers

Double neutron capture at GAMS

Target	abund.	σ	Interim	T _{1/2}	σ	(n,g)/	Final	T _{1/2}	per g ta	arget
	%	b	product	d	b	[(n,g)+decay]	product		atoms	Bq
44Ca	2.086	0.8	45Ca	163	15	1.4E-1	46Ca	stable		
58Fe	0.28	1.3	59Fe	44.5	6	1.7E-2	60Fe	1.5E6 a	1.2E+17	2E+3
62Ni	3.634	15	63Ni	3.7E+4	24	9.8E-1	64Ni	stable		
144Sm	3.1	1.6	145Sm	340	280	8.6E-1	146Sm	1E8 a	6.6E+17	1E+2
150Sm	7.4	102	151Sm	3.4E+4	15200	1.0E+0	152Sm	stable		
164Dy	28.2	2650	165Dy	0.097	3500	2.2E-2	166Dy	81.5 h		
168Yb	0.13	2400	169Yb	32	3600	8.8E-1	170Yb	stable		
170Er	14.9	8	171Er	0.31	370	7.7E-3	172Er	49 h		
180Hf	35.1	13	181Hf	42.39	30	7.8E-2	182Hf	9E6 a	3.1E+18	8E+3
186W	28.6	37	187W	0.99	70	4.6E-3	188W	70 d	7.5E+17	9E+10
192 O s	41	3	193Os	1.25	250	2.0E-2	194Os	6.0 a	1.4E+18	5E+9
For cros	s-section r	neasure	ements							
78Se	23.78	0.43	79Se	1.1E+8	1	1.0E+0	80Se	stable		
106Pd	27.33	0.293	107Pd	2.4E+9	1	1.0E+0	108Pd	stable		
124Sn	5.79	0.134	125Sb	1007	1	6.3E-2	126Sb	12.4 d		

Lines in bold mark experiments that have already been performed (also (n,g) cross-section of ⁷⁵Se, ¹⁴⁷Nd, ¹⁵²Eu, ¹⁷⁰Tm, ¹⁷¹Tm, ¹⁹⁴Ir

Lines in blue lead to final products that are long-lived.

Flux distribution

V4 irradiations

ILL instruments

Cold (polarized) neutron beam PF1B

99.7% polarized neutron flux: 3E9 cm⁻²s⁻¹

 Ballistic supermirror neutron guide H113: 76 m length

2E10 n/cm²/s on 20x6 cm²

Gamma ray flux from the reactor: negligible

Ratio slow neutrons to fast neutrons is ~10⁶

 Average neutron energy: <E>=5.38 meV
 <λ>=3.9 Å
 <T>=62.42 K

²⁴⁹Cf(n,f) measurement

Sample was turned over an angle of 90° in order to place it in front the other telescope

Telescope: 49.8 µm ∆E' and 1500 µm E' used to measure the ternary triton and alpha yields simultaneously
 Better separation between the ternary particles, but energy threshold higher than the previous telescope

O. Serot, S. Vermote, C. Wagemans, et al.

<u>**3rd Step:</u>** Measurement of the triton counting Rate</u>

²⁴⁹Cf(n,f) measurement

complementary to LOHENGRIN measurements

³⁹Ar(n,α)³⁶S

	Ti 39	Ti 40	Ti 41	Ti 42	Ti 43	Ti 44	Ti 45	Ti 46	Ti 47	Ti 48	Ti 49	Ti 50
	11 00	11 40		11 72	11 45							
						60 a	3.1 h	8.0	7.3	73.8	5.5	5.4
			Sc 40	Sc 41	Sc 42	Sc 43	Sc 44	Sc 45	Sc 46	Sc 47	Sc 48	Sc 49
						3.9 h	3.9 h		84 d	3.4 d	44 h	57 m
Ca 36	Ca 37	Ca 38	Ca 39	Ca 40	Ca 41	Ca 42	Ca 43	Ca 44	Ca 45	Ca 46	Ca 47	Ca 48
				96.9	100 ka	0.65	0.14	2.09	163 d	0.004	4.5 d	0.19
K 35	K 36	K 37	K 38	K 39	<mark>K</mark> 40	K 41	K 42	K 43	K 44	K 45	K 46	K 47
				93.26	1.3 Ga	6.73	12 h	22 h				
Ar 34	Ar 35	Ar 36	Ar 37	Ar 38	Ar 39	Ar 40	Ar 41	Ar 42	Ar 43	Ar 44	Ar 45	Ar 46
		0.34	35 d	0.06	269 a	99.6	1.8 h	33 a				
CI 33	CI 34	CI 35	CI 36	CI 37	CI 38	CI 39	CI 40	CI 41	CI 42	CI 43	CI 44	CI 45
		75.8	0.3 Ma	24.2	3 7 m	56 m						
S 32	S 33	S 34	S 35	S 36	S 37	S 38	S 39	S 40	S 41	S 42	S 43	S 44
95	0.8	4.2	88 d	0.02	5.0 m							
16	17	18	19	20	21	22	23	24	25	26	27	28

IS382 experiment: ³⁹Ar(n, α)³⁶S

- 1. first sample: 24 hours collection with CaO target at ISOLDE for a sample with 8E12 atoms of ³⁹Ar \Rightarrow too weak to see (n, α)
- 2. second sample: 3 days collection with TiO₂ target at ISOLDE (up to 4.1 μ A of 1 GeV protons) for a sample with 2.85E14 atoms of ³⁹Ar

Search for ³⁹Ar(n,α)³⁶S at ILL

σ[³⁹Ar(n_{th},α)³⁶S] < 0.29 b

- G. Goeminne et al., Nucl. Phys. A688 (2001) 233c.
- G. Goeminne et al., Nucl. Instr. Meth. A489 (2002) 577.
- ⇒ more intense sample needed to determine real value and to measure at astrophysical energies with neutron time of flight facility

Possible improvements

Modification	Gain		
 replace MK7 FEBIAD (4% ionization eff.) with Mono-ECRIS (40% ionization eff.) 	10		
 Ti disk target (4 g/cm³) instead of TiO₂ fiber target (0.4 g/cm³) 	10		
 0.7 cm long target instead of 20 cm long 	0.035		
 Proton current 40 μA instead of 2.2 μA 	18		
 Beam time 420 days 	140		
Total	8000		
Semple with 2519 stome			

 \Rightarrow Sample with 2E18 atoms

Ti irradiation at SINQ

Ti irradiation at SINQ, ion implantation at ISOLDE

- irradiation of 2.56 g Ti in STIP-IV, target 6: April 2004 to December 2005
- integrated dose about 0.4 Ah/cm² (>8E21 p/cm²)
- decay of short-lived activities for 4 years
- dose rate initially dominated by ⁴⁶Sc (84 days)
- implantation during ISOLDE shutdown once the MonoECRIS is working reliably
- 3-4E18 atoms of ³⁹Ar (0.3 GBq)
- simultaneous extraction of ≈1E17 atoms of ⁴²Ar (70 MBq)

²⁴³Cm(n,f) measurement

O. Serot, S. Vermote, C. Wagemans, et al.

Velocity selector

Thermal neutron flux: 3E9 cm⁻²s⁻¹

Direct view to core: fast neutrons, high gamma background

Other beamlines

Hot neutrons

 hot neutrons: 4E7 n/cm²/s at 0.1 eV 1E6 n/cm²/s at 1 eV

PF2

- ultracold neutrons: 3E4 n/cm²/s for E=0 to 250 neV, beam size up to 14x10 cm²
- very cold neutrons: 4E6 n/cm²/s at 8 μeV beam size up to 7x3.4 cm²

Sample environment

Available for experiments at ILL:

- dilution refrigerators down to 15 mK
- superconducting split coil magnets up to 15 T

Polarized neutron capture on oriented nuclei

Fig. 3. Schematic view of the polarized beam system, target with polarizing split-coil magnet, neutron spin-flip device, neutron polarization analyzer and Ge(Li) detectors (not to scale).

Neutron interferometer S18

Coherent scattering length measurement

H.E. Fischer et al., J. Phys. Cond. Matter 20 (2008) 045221.

How to get beam time at ILL?

- experiments at LOHENGRIN, GAMS, PF1B or S18 via proposals to ILL, discuss with instrument responsibles
- proposal deadlines 15 February and 15 September
- (co-)proposers affiliated to member state lab
- study of short-lived products at MINI-INCA in collaboration with CEA Saclay and proposal to ILL
- experiments at Neutrograph (thermal neutron beam of 3E9 n/cm²/s) or irradiations in V4 (up to 1.5E15 n/cm²/s) to be discussed
- Possible "abuse" of diffraction instrument to access monochromatic "hot" neutron beams up to 1.3 eV (few 10⁶ to 10⁷ n/cm²/s)