

Project in the framework of EFNUDAT

## Resonance parameters for <sup>197</sup>Au +n from transmission, capture and selfindication measurements at GELINA

C. Massimi, A. Borella, S. Kopecky, and P. Schillebeeckx



## EC - JRC – IRMM

**Mission:** 

to promote a common European measurement system in support of EU policies



Resonance parameters for <sup>197</sup>Au + n from transmission, capture and self-indication measurements at GELINA

- > The importance of  ${}^{197}Au(n,\gamma){}^{198}Au$  reaction cross section
- Time-of-flight measurements
- Measurements techniques and detectors
- Measurements at IRMM GELINA
- Results and conclusions



## The importance of <sup>197</sup>Au(n,γ)<sup>198</sup>Au "Reference cross-section"

- > The <sup>197</sup>Au(n, $\gamma$ ) cross section is considered as a standard:
  - at thermal energy (0.025 eV) where the cross section is known with an uncertainty of 0.1%
  - ➢ between 0.2 and 2.5 MeV of 1%
- Thanks to its high cross section the resonance at 4.9 eV is used to appy the "saturated resonance technique"

- In both cases it allows to normalize capture data (used as reference in neutron facilities)
- Widely used in nuclear reactor and other applications for neutron flux determination







## The importance of <sup>197</sup>Au(n,γ)<sup>198</sup>Au "Reference cross-section"

The normalization factor (N) is the link between the measured capture yield and the cross-section.

N is a factor that groups together:

- ➤ the detector efficiency
  - ➤ the capture measurement
  - the flux measurement
- the fraction of neutron flux impinging on the sample
- (...other experimental effects, if present)

Ideally the normalization factor is a time-independent factor, which can be deduced **from a known yield**:

$$\rightarrow$$
 N = Y<sub>calculated</sub>/Y<sub>measured</sub>



ALMA MATER STUDIORUM UN IVERSITÀ DI BOLOGNA



## The importance of ${}^{197}Au(n,\gamma){}^{198}Au$ "Reference cross-section"









## The importance of ${}^{197}$ Au(n, $\gamma$ ) ${}^{198}$ Au "The saturated resonance techniques"

A resonance is saturated when all incoming neutrons are absorbed in the sample

This technique requires:

>  $n\sigma_{tot} >> 1$ >  $\Gamma_{\gamma} >> \Gamma_n$  <sup>197</sup>Au resonance at 4.9 eV:

 $σ_{tot}(4.9 \text{ eV}) ~ 3 \times 10^4 \text{ barns}$ Minimum thickness ≈ 30 µm

 $\succ$   $\Gamma_{\gamma}$  =124 meV;  $\Gamma_{n}$  = 15.2 meV

Remark: correction for gamma-ray attenuation in sample[2] Normalization does <u>not</u> depend on the resonance parameters[2], i.e. independent of cross section value

Absolute Measurement

[2] A. Borella et al., NIM A **577** (3) (2007) 626











| Time-O<br>Limitat                   | of-Flight<br>tions due                                                        | measu<br>to the                                                                   | rements<br>resolut                                     | S<br>tion Area<br>≈ Independent                                                                                                                                                                                             |
|-------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     | $\begin{array}{c} \text{Area} \\ E_0, \Gamma_n, \Gamma_\gamma, g \end{array}$ | $\begin{array}{l} \text{Resonant Part} \\ \Gamma_n \gg \Gamma_\gamma \end{array}$ | $\Gamma_\gamma \gg \Gamma_n$                           | of resolution                                                                                                                                                                                                               |
| $A_{tot}(thin)$<br>$A_{tot}(thick)$ | $ng\Gamma_n$<br>$\sqrt{ng\Gamma_n\Gamma}$                                     | $\approx ng\Gamma_n$ $\approx \sqrt{ng}\Gamma_n$                                  | $\approx ng\Gamma_n$ $\approx \sqrt{ng\Gamma_n\Gamma}$ | $ \begin{aligned} f_{obs}^{Cap} &= f(E_0, \Gamma_{\gamma}, \Gamma_n, J, \ell) \\ f_{obs}^{Tra} &= f(E_0, \Gamma_{\gamma}, \Gamma_n, J, \ell) \\ f_{obs}^{S-I} &= f(E_0, \Gamma_{\gamma}, \Gamma_n, J, \ell) \end{aligned} $ |
| $A_{\gamma}(thin)$                  | $ng\frac{\Gamma_n\Gamma_\gamma}{\Gamma}$                                      | $\approx ng\Gamma_\gamma$                                                         | $\approx ng\Gamma_n$                                   | Combination of                                                                                                                                                                                                              |
| $A_n(thin)$                         | $ng\frac{\Gamma_n\Gamma_\gamma}{\Gamma}$                                      | $\approx ng\Gamma_n$                                                              | $\approx ng \frac{\Gamma_n \Gamma_n}{\Gamma}$          | experimental data<br>required                                                                                                                                                                                               |
| $\mathrm{R}_{\gamma}$               | $\sqrt{\frac{\Gamma}{n_tg\Gamma_n}}$                                          | $\approx \frac{1}{n_t g}$                                                         | $\approx \sqrt{\frac{\Gamma}{n_t g \Gamma_n}}$         | Self-indication<br>always complementary                                                                                                                                                                                     |







#### **Transmission experiment**

$$\mathbf{T} = \frac{\mathbf{C}_{in}}{\mathbf{C}_{out}} \cong \mathbf{e}^{-n\sigma_{tot}}$$

- **Incoming neutron flux cancels**  $\geq$
- **Detection efficiency calcels**  $\triangleright$

#### **Good Geometry (collimation)**

- All detected neutrons have 1 traversed the sample
- Neutron scattered in the 2. sample do not reach the detector

#### $\rightarrow$ Direct relation between T and $\sigma_{tot}$





Sample





Detector





Sample













**Capture experiment** 

$$\boldsymbol{C}_{r}=\boldsymbol{\epsilon}_{r}\,\boldsymbol{Y}_{r}\,\boldsymbol{A}_{r}\boldsymbol{\phi}_{r}$$

- >  $\phi_r$  Neutron Fluence Rate
- ε<sub>r</sub> Detection efficiency (for a reaction event)
- > A<sub>r</sub> effective area
- Y<sub>r</sub> reaction yield (beam fraction undergoing the partial Reaction)



Complex relation between  $C_r$  and  $Y_r$   $Y_r$  related to  $\sigma_r$ 

$$\mathbf{Y}_{r} = (1 - \mathbf{e}^{-n_{r}\sigma_{t}})\frac{\sigma_{r}}{\sigma_{t}}$$







#### Capture experiment Set up



#### Detector

<u>Technique</u>: Total Energy Detector <u>Type</u>: C<sub>6</sub>D<sub>6</sub> and Weighting Function

- + Correction for the resonance strength
- + Correction for the neutron sensitivity









#### **Self-Indication Measurement**

- Combination of capture and transmission principle
- Au sample as a capture and transmission sample

$$C_{SI} = \varepsilon_c Y_c(E_n) e^{-n_t \sigma_{tot}} \varphi_0(E_n)$$









# Au transmission

Resonance energy

| Flight | Frequency |                |                 | filters        |  |
|--------|-----------|----------------|-----------------|----------------|--|
| path   |           | Sample         | Overlap         | Background     |  |
| 49.34  | 50Hz      | 10.0 µm        | Cd              | Na,Co          |  |
| 49.34  | 50Hz      | <b>20.0</b> µm | Cd              | Na,Co          |  |
| 49.34  | 50Hz      | 50.0 μm        | Cd              | Na,Co          |  |
| 49.34  | 800Hz     | 3.0 mm         | <sup>10</sup> B | Na,Co          |  |
| 26.45  | 50Hz      | 3.0 mm         |                 | Pb, Na, Co, Rh |  |
| 26.45  | 400Hz     | 3.0 mm         | <sup>10</sup> B | Pb, Na, Co, Rh |  |
| 26.45  | 800Hz     | 3.0 mm         | $^{10}B$        | Pb, Na, Co, Rh |  |

- > Different flight path and repetition rate (50 and 800 Hz)
- > Several Au sample of different thickness (10 μm up to 3 mm thick samples)

Data reduction packages AGL and AGS (Analysis of Generic TOF Spectra) with full propagation of uncertainties and complete covariance matrix

Maximum dead time correction 2%









Au transmission on a thick sample:

identification of s-wave resonances





#### Au capture measurements

|                                                               | Sample        | Overlap                                 | filters<br>Background |
|---------------------------------------------------------------|---------------|-----------------------------------------|-----------------------|
|                                                               | TO 10         | - · · · · · · · · · · · · · · · · · · · | Co P: No              |
|                                                               | 12-1.0 mm     |                                         | Co, Bi, INa           |
|                                                               | C2 - 0.5 mm   |                                         | CO, DI, INA           |
|                                                               | C2 - 0.5 mm   |                                         | W, Co, Bi, Na         |
| FP5-12m 50 Hz                                                 | C2 - 0.5 mm   | <b>C</b> 1                              | Ag, W, Co, Bi, Na     |
| $4 C_6 D_6$ "pyramid"                                         | C2 - 0.5 mm   | Cd                                      | Co, Bi, Na            |
|                                                               | C1 - 0.1 mm   | C1 - 0.1 mm                             |                       |
|                                                               | S1 - 0.05 mm  |                                         | Co, Bi, Na            |
|                                                               | N2 - 0.01 mm  |                                         | Co, Bi, Na            |
|                                                               | N3 - 0.005 mm |                                         | Co, Bi, Na            |
| FP5-12m 50 Hz                                                 | C2-0.5mm      |                                         | Co, Bi, Na            |
| 2 C <sub>6</sub> D <sub>6</sub> "cylinder"                    | C2-0.5mm      | Cd                                      | Co, Bi, Na            |
|                                                               | T2 - 1.0 mm   | Cd                                      | Na,Pb                 |
|                                                               | C2 - 0.5 mm   | Cd                                      | Na,Pb                 |
|                                                               | C2 - 0.5 mm   | Cd                                      | W, Co, Na, Pb         |
| FP15-30m 50 Hz                                                | C1 - 0.1 mm   | Cd                                      | Na.Pb                 |
| $2 C_6 D_6$ "cylinder"                                        | N17 - 0.1 mm  | Cd                                      | Na,Pb                 |
| <u>.</u>                                                      | S1 - 0.05 mm  | Cd                                      | Na.Pb                 |
|                                                               | N2 - 0.01 mm  | Cd                                      | Na.Pb                 |
|                                                               | N3 - 0.005 mm | Cd                                      | Na,Pb                 |
| 5                                                             | T2 - 1.0 mm   | <sup>10</sup> B                         | Pb. Al                |
| FP15-30m 800 Hz                                               | C2 - 0.5 mm   | 10B                                     | Pb, Al                |
| 2 C <sub>e</sub> D <sub>e</sub> "cylinder"                    | T1 - 0.1 mm   | 10B                                     | Pb. Al                |
| 0-0 -)                                                        | T1 - 0.1 mm   | 10B                                     | Pb. Al. S             |
|                                                               | T1 - 0.1 mm   | <sup>10</sup> B                         | Pb, Al, Na            |
| FP14-60m 800 Hz<br>4 C <sub>6</sub> D <sub>6</sub> "cylinder" | C1 - 0.1 mm   | Cd                                      | Co, Na                |

Different flight path, repetition rate (50 and 800 Hz) and  $C_6D_6$  detectors

Several Au sample of different thickness (10 mm up to 1 mm thick samples)

Data reduction packages AGL and AGS <sup>(\*)</sup> (Analysis of Generic TOF Spectra) with full propagation of uncertainties and complete covariance matrix

Maximum dead time correction 20%

(\*) Accepted by IAEA for EXFOR







Au capture measurements (capture)





Au capture measurements (flux)





Au capture measurements at 12 m flight path





#### Au self-indication measurement I









#### Au self-indication measurement II







#### **Resonance shape analysis (transmission, capture and Self-Indication)**

1<sup>st</sup> Au resonance











## Resonance shape analysis with $\chi^2$ evaluation for the $^{1st}$ Au resonance

| Measurement     | sample $\chi^2$ |      | 2    |  |
|-----------------|-----------------|------|------|--|
|                 | thickness       | J=1  | J=2  |  |
| Transmission    | $10 \ \mu m$    | 1.11 | 0.97 |  |
| Transmission    | $20 \ \mu m$    | 1.09 | 0.98 |  |
| Self-indication | 0.1 mm          | 1.66 | 1.04 |  |
| Capture         | $5\mu{ m m}$    | 1.28 | 1.16 |  |
| Capture         | $10 \ \mu m$    | 1.27 | 1.20 |  |
| Global          | -               | 1.28 | 1.07 |  |

The self-indication measurement presents the larger variation on  $\chi 2$ 

→ <u>Self-indication</u> needed to determine the spin factor







**Determination of resonance parameters up to 200 eV:** 

- > Validation of the results with the measurement of the cross section at thermal energy
- Deterministic assignment of the total angular momentum of 9 resonances
- Determination of the parameter of 12 resonances, in particular for the 4.9 eV resonance with an accuracy better than 0.5%





#### Summary and conclusions



- > This work is intended to provide an important contribution to an ongoing effort towards the extension of the energy region in which  $Au(n,\gamma)$  is considered as a standard. In particular in the resolved resonance region.
- In the framework of the EFNUDAT project we have performed a series of transmission, capture and self-indication measurements at the GELINA time-of-flight facility, in different conditions of neutron beam, background, flight path length, experimental set up, data acquisition, ...;
- > Present data valuable input for new evaluation.





