

Measurements of Thermal-Neutron Capture Cross-Sections for Radioactive Nuclides

EFNUDAT Workshop .BUDAPEST 23-25/SEP/2009

Shoji NAKAMURA Japan Atomic Energy Agency

Table of Contents

1.Motivation Back-ground and some problems of FP & MA data 2.Methods of Cross-section measurements Neutron activation analysis Prompt γ -ray spectroscopic analysis **T-Of-Flight method 3.Experiments** Neutron activation analysis ex.1 90 Sr(n, γ) 91 Sr reaction ex. 2 241 Am(n, γ) 242g Am reaction ex.3 other **Prompt** γ -ray spectroscopic analysis $^{107}Pd(n_{th},\gamma)$ ^{108}Pd cross-section 93 Zr(n_{th}, γ)⁹⁴Zr cross-section **4. Highlight Data** FP and MA cross-section data by JAEA

1. Motivation

Nuclear Cross-Section Data

Evaluated Data File ex. JENDL on Products, etc.

.Transmutation study, Fuel Burn-up, Fission Products, *etc.* **.Fast Breeder Reactor, ADS Reactor, Innovative Reactor,** *etc.*

Problems in Cross-Section Data for FP & MA A very few reliable data **1. Discrepancies among reported data** ⁹⁰Sr. 0.8 to 0.015 (b) $^{137}Cs.$ 0.11 to 0.25 (b) 2. Relatively large errors ²⁴¹Am. 780 \pm 50, 636 \pm 46, 602 (b) **3.** A few of exp. Data ¹³⁵Cs, ¹⁰⁷Pd, ⁹³Zr *etc*. 4. No Data ²³⁸Np

Aimed to re-measurement the cross-sections for important FP's and MA's

2.Methods -Neutron Activation Analysis-

Rikkyo Univ. Reactor

JRR-3M

転位置D Horizontal cor

Kyoto Univ. Reactor

YAYOI

-Prompt γ-ray Spectroscopic Analysis-

Ge & BGO Detector Geometry

An Example of y-ray spectrum

-Time-Of-Flight Analysis-

3. Experiment Ex.1 ⁹⁰Sr(n,γ)⁹¹Sr reaction

Only upper limits of I_0

Kyoto Univ. Reactor : KUR *(a)* **Hydraulic Facility** Neutron Flux : 1x10¹⁴ n/cm²sec Irradiation: 10 hours

Al capsules for confinement of samples

Al capsule also play the role as a heat sink

Modified Cadmium-ratio Method Muli-flux monitors Extract σ_0 from the reaction rate R

Ex.1 90 Sr(n, γ) 91 Sr reaction -Results-

Author	Thermal Cross Section, σ_0 (mb)	Resonance Integral, I ₀ (mb)	
Present Work	10.1 ± 1.3	104 ± 16	
Harada <i>et al</i> . [1994]	15.3 + 1.3 - 4.2	<160	

S.Nakamura et al. : J. Nucl. Sci. Technol., <u>38</u>, No.12, 1029(2001).

Measured σ_0 and I_0 separately <u>First data for I_0 </u> Error of σ_0 was improved to 1/2 Adopted as a part of JENDL-4

Ex.2 ²⁴1Am(n,γ)^{242g}Am reaction

²⁴¹Am(n,γ)^{242g}Am reaction cross-section Differences between the reported data: <u>600 to 800 (b)</u>

Cd shield

Difficult to set the cut-off into the low energy

Ex.2 241 Am(n, γ) 242g Am reaction -Results-

The differences among past data was caused by the treatment of the first resonance peak (0.308eV).

Another nuclides

Difficult and/or impossible to supply samples: *ex.* ¹³⁵Cs (2.3x10⁶yr) Use ¹³⁵Cs contained in ¹³⁷Cs std. sol. as an impurity

Mass Analyzer for *NAA* Quadrupole Mass Filter Liq. N Cooling Trap High Vacuum : 10⁻¹⁰ Torr

Detection limit : 300 ng

Isotope Ratio ¹³⁵Cs/¹³⁷Cs

4. Highlight Data FP's & MA's cross-section data by JAEA

Nuclide	Past Data □Author, Year□	JAEA Data	Nuclide	Past Data □Author, Year□	JAEA Data
⁹⁰ Sr	σ _{eff} □0.8 [±] 0.5□ (Zeisel 1966)	$\sigma_0 10.1^{\pm}1.3m$ I ₀ 104 [±] 16m (2001)	^{166m} Ho	σ ₀]9140±650] I ₀]1140±90] Masyanov 1993]	σ _{eff} 3 [±] 1 k 2000 σ ₀ 3.11 [±] 0.82k I ₀ 10.0 [±] 2.7k
0075	$\sigma_0 \Box 20 \pm 2 \Box$	$\sigma_0 \square 22.9^{\pm}1.3 \square$			(2002)
⁹⁹ 1°c	I ₀ '_186±16_ _Lucas 1977_	I ₀ ∐398±38∐ □1995□			σ_0 141.7 $^{\pm}$ 5.4
¹²⁹ I	σ ₀ 27±20 I ₀ 36±40 Eastwood 1958	σ ₀ 30.3 [±] 1.2 I ₀ 33.8 [±] 1.4 1996	²³⁷ Np	σ ₀ -158±3- I ₀ -652±24- 	I ₀ 862±51 (2003 σ ₀ 169±6 (2006)
127]	σ ₀ -4.7 [±] 0.2- I ₀ -109 [±] 5- Friedmann 1983	σ ₀ □6.40 [±] 0.29 I ₀ □162 [±] 8□ □1999□	²³⁸ Np	No Data	σ _{eff} ⊡479 [±] 24⊡ (2004)
¹³⁵ Cs	$\sigma_0 = 8.7 \pm 0.5 =$ $I_0 = 61.7 \pm 2.3 =$ Baserg 1958	$\sigma_0 = 8.3^{\pm}0.3$ $I_0 = 38.1^{\pm}2.6$ = 1997	²⁴¹ Am	σ_{00} 768±58 I ₀₀ 1694±146 Shinohara 1997	σ _{0□} □628±22□ I _{0□} □3.5±0.3k□ (2007)
¹³⁴ Cs	σ _{eff} 134 [±] 12 (Bayly 1958)	σ _{eff} []141 [±] 9] (1999)	²⁴³ Am	$\sigma_{_{0m}}$ 80 , $\sigma_{_{0g}}$ 4.3 $\sigma_{_{0m+g}}$ 84.3	σ _{eff} □174.0 [±] 5.3□ (2006)
¹³³ Cs	$\sigma_0 30.4 \pm 0.8$ I ₀ 461 ± 25 Baerg 1960	σ ₀ 29.0±1.0 I ₀ 298±16 I999		□Ice 1966□	

Limit of application by NAA

Stand. Cross-section 332 (mb) of $H(n,\gamma)$

8-MW Los Alamos Omega West Reactor (OWR) (Shutdown in 1994)

SOUTH

Application to cross-section measurement for ¹⁰⁷Pd

Author	Cross Section $\sigma_0(b)$	
Present Work	9.16±0.27	
JENDL-3.3	2.0071	
T.O.I. 8ed	1.8±0.2	
Mughabghab	1.8±0.2	

Obtained ¹⁰⁷**Pd cross-section experimentally ! About 5 times larger than eval. data! !!**

Calc. values by res. parameters

Result of thermal-neutron capture cross-section for 93 Zr(n_{th} , γ) and 91 Zr(n_{th} , γ) reactions

References		σ_0 for ⁹¹ Zr (b)	σ_0 for ⁹³ Zr (b)
H.Pomerance ^{a)}	1952	1.52 ± 0.12	$1.3 < \sigma_0 < 4$
Garrison <i>et al.</i> ^{b)}	1962	1.2 ± 0.32	1.1 ± 0.4
Clayton ^{c)}	1972	1.579	1.996
Mughabghab <i>et al</i> .	1981	1.24 ± 0.25	$1.3 < \sigma_0 < 4$
Table of Isotopes 8ed	1998	1.24 ± 0.25	2.7 [±] 1.4
JENDL-3.3	2002	1.247	2.239
This Work		1.30 ± 0.04	0.63 ± 0.02

- a) Measurements with ORNL pile oscillator
- b) Statistical model estimates
- c) Calculation by the resonance parameters from BNL-325

Thank you for your kind attention

Supplement A:

Analysis of Prompt γ rays emitted from ¹⁰⁷Pd(n_{th} , γ) Reaction

Analysis of Prompt γ ray from ¹⁰⁷Pd(n_{th}, γ) Reaction

Re	por	ted]	Dat	ta

 107 Pd.T_{1/2}=6.5×10⁶ yr

Refs.	σ_0 (b)	<i>I</i> ₀ (b)
JENDL-3.3	2.0071	112.2
Macklin ('85)		108.1 ±4.3*1
Holden ('81) ENSDF of U.S.NNDC	1.8±0.2(b)	86.6
Singh ('78)	1.8^{*2}	87* ²

*1 Cal. val. with 130 resonances up to 3.5keV

*2 Cal. Val. with 34 ¹⁰⁷Pd resonances below 700eV

8-MW Los Alamos Omega West Reactor (OWR)

SOUTH

Experimental arrangement of the target, collimator, and detector at the Los Alamos Omega West Reactor

Phys.Rev.C, 32,18,1985. S.Raman et al.

Analysis Process

¹⁰⁷Pd+100mg CH₂ Anti-Compton Spectrometer Data Low Energy region: 0.3.3 MeV 663 peaks

Select prompt γ-rays with known levels

Efficiency correction calibration by ¹H+n cross section 332.6[±]0.7(mb) Test of selected g-rays with Gtol Code

Emission Intensity (I_{γ}) for γ -rays from ¹⁰⁷Pd(n, γ) reaction

Lower limit of cross section $\sum_{g.s.\gamma}$

Authorization by Gtol Code

Program that calculates optimized energy levels by least-squares method with the information on γ -ray energies

U.S. National Nuclear Data Center ENSDF Analysis and Utility Programs Version 6.4b [Dec.3,2003] ENSDF data set

Emission Intensity: I_{γ}

Intensity I_{γ} of prompt r ray from ¹⁰⁷Pd(n, γ) reaction are given by following equation:

$$I_{\gamma} = \frac{\varepsilon_H n_H \sigma_H}{n_{pd} Y_H} \cdot \frac{Y_{Pd}}{\varepsilon_{pd}}$$

where

n _H .	n _{Pd}	: Target amounts of H and ¹⁰⁷ Pd
E _H		: Detection efficiency fo 2.2-MeV y ray
	E _{Pd}	: Detection efficiency fo 2.2-MeV γ ray ¹⁰⁸ Pd
	σ_{H}	: ¹ H cross-section 332.6 ± 0.7(mb)
Y_H		: Yield of 2.2-MeV γ ray
$\overline{Y_{Pd}}$: Yield of prompt γ ray from ¹⁰⁸ Pd

Extraction of prompt γ rays

¹⁰⁷Pd + n

2887.9 . 6 2719.5 4 2+ 2540.5 0 2477.94 21 (2+)2404.0 4 2390.64 21 2+ 2324.2 5-4 2282.3 3 2280.76 25 2218.43 2/ 2+ (1,2+)2098.04 24 3-2046.8 3 (4+) 1989.79 20 1857.0 3 1771.1 4 (4+) 1624.47 23 (1+.2+)1540.05 18 1441.29 2+ 17 (3+) 1335.11 21 1314.2 Ô÷-3 1053.08 18 1048.33 19 0+ 931.02 15 2+ ŝ 434.09 14 2+ 0.0 n.

¹⁰⁸Pd (Stable)

Results of authorization

Level (ke	V)	\mathbf{J}_{π}	Deexciting γ rays	Level (ke	V)	${f J}_{\pi}$	Deexciting γ rays
0.0		0+		2046.2	3	3-	998.0, 1612.3
434.01	15	2+	433.1	2097.87	23	(1,2+)	1664.2, 2097.5
930.54	17	2+	496.4, 930.5	2217.74	21	2+	677.5, 1164.6, 1287.3, 1784.1
1047.87	20	4+	613.5	2281.1	3		1351.0, 1846.7
1053.11	21	0+	619.1, 1053.1	2282.49	12		946.4, 1233.6
1313.4	3	0+	382.3, 879.5	2325.3	7	5-	1277.4
1334.73	25	(3+)	900.6	2390.36	21	2+	1459.4, 1956.2, 2390.7
1440.90	21	2+	1006.6, 1441.3	2403.8	4		1969.8
1539.75	20	(1+,2+)	1105.3, 1539.7	2477.65	20	(2+)	1429.2, 2044.2, 2477.6
1623.7	3	(4+)	693.5, 1189.4	2540.1	3	4+	1608.9, 2106.4
1956.0	3	4+	908.1, 1025.4	2719.4	4	2+	2285.4
1988.79	21	(4+)	548.0, 654.1, 941.1, 1057.8, 1554.6				

Lower limit of thermal-neutron capture cross-section

Emission Intensities: I_g of γ -rays feeding to the ground state of ¹⁰⁸Pd

Observed γ rays (keV)	Intensity I _y (mb)
434.0	7588 ± 255
931.1	606 ± 19
1053.5	488 ± 73
1441.7	214 ± 8
1540.0	104 ± 6
2097.6	83 ±6
2477.4	72 ± 7

 $\sum_{g.s.} I_{\gamma} \cdot (1 + \alpha_T) = 9.16 \pm 0.27 \quad (b)$

Gamma-ray intensity balance for the 434keV level				
	$E_{\gamma}({ m keV})$	I_{γ} (mb)	E_{γ} (keV)	I _γ (mb)
OUT	434.0	7588 ± 255		
IN	497.2	1940±63	1664.4	34±4
	614.3	$\boldsymbol{2168\pm81}$	1784.3	117±7
	618.2	454 ± 30	1946.9	133±6
	880.1	93±4	1956.3	45±5
	901.3	713 ± 23	1969.9	33±4
	1007.2	399 ±13	2044.3	133 ± 8
	1105.9	169±9	2106.5	103 ± 7
	1189.9	39 ± 5	2285.4	82 ± 8
	1554.9	42 ± 8	2453.8	27 ±6
	1612.6	374 ± 18		
	IN: 7.10±0.2	l1 (b)	OUT: 7.59±0.2	6 (b)

Result of thermal-neutron capture cross-section for ${}^{107}Pd(n_{th},\gamma){}^{108}Pd$ reaction

Refs.	σ_{0} (b)	<i>I</i> ₀ (b)
This Work	9.16±0.27	
JENDL-3.3	2.0071	112.2
Macklin ('85)		108.1 ±4.3*1
Holden ('81) ENSDF of U.S.NNDC	1.8±0.2(b)	86.6
Singh ('78)	1.8^{*2}	87 ^{*2}

*1 Cal. val. with 130 resonances up to 3.5keV

*2 Cal. Val. with 34 ¹⁰⁷Pd resonances below 700eV
Result of thermal-neutron capture cross-section for ${}^{105}Pd(n_{th},\gamma){}^{106}Pd$ reaction

References		σ_0 (b)	
Table of Isotopes 8th	1998	20.0±3.0	
JENDL-3.3	2002	20.25	
Mughabghab <i>et al</i> .	2003	21.0 ± 1.5	
Firestone <i>et al</i> .	2005	21.1 ± 1.5*	
This Work		19.1 ± 0.5 *	

* Prompt g-ray analysis

Supplement B:

Analysis of Prompt γ rays emitted from ${}^{93}Zr(n_{th},\gamma)$ Reaction

Measured Spectra (Anti-Compton mode)

Measured Spectra (Pair-spectrometer mode)

Analysis Process

.Zr + 100 mg (CH₂)_n .Anti-Compton mode ..3.176 MeV . 219 peaks

Intensity for 918 keV γ-ray

Efficiency correction calibration by ¹H+n $\sigma = 332.6 \pm 0.7 (mb)$

$$I_{\gamma} = \frac{\varepsilon_H n_H \sigma_H}{n_{Zr} Y_H} \cdot \frac{Y_{Zr}}{\varepsilon_{Zr}}$$

Zr Anti-Compton mode .3.176 MeV 530 peaks

Gtol Code

Zr Pair Spectrometer mode 1.0. 11.3 MeV 162 peaks

Intensities I $_{\gamma}$ (mb)

lower limit of cross sections Σ I γ g.s.

Lower limit of thermal-neutron capture cross-section

Emission Intensities: I_{γ} of γ -rays feeding to the ground state of ⁹⁴Zr

Observed γ rays (keV)	Intensity I_{γ} (mb)
918.8	543.5±3.7
1671.5	53.1 ± 1.1
2846.5	27.1 ± 0.7
8217.7	4.6 [±] 0.4

$$\sum_{g.s.} I_{\gamma} = 0.63 \pm 0.02 \ (b)$$

Result of thermal-neutron capture cross-section for 93 Zr(n_{th} , γ) and 91 Zr(n_{th} , γ) reactions

References		σ_0 for ${}^{91}\mathrm{Zr}$ (b)	σ_0 for ⁹³ Zr (b)
H.Pomerance ^{a)}	1952	1.52 ± 0.12	$1.3 < \sigma_0 < 4$
Garrison <i>et al.</i> ^{b)}	1962	1.2 ± 0.32	1.1 ± 0.4
Clayton ^{c)}	1972	1.579	1.996
Mughabghab <i>et al</i> .	1981	1.24 ± 0.25	$1.3 < \sigma_0 < 4$
Table of Isotopes 8ed	1998	1.24 ± 0.25	2.7 ± 1.4
JENDL-3.3	2002	1.247	2.239
This Work (lower limit)		1.30 ± 0.04	0.63 ± 0.02

- a) Measurements with ORNL pile oscillator
- b) Statistical model estimates
- c) Calculation by the resonance parameters from BNL-325

Supplement C:

Thermal-Neutron Capture Cross-Section And Resonance Integral of ²⁴¹Am(n,γ)^{242g}Am Reaction

Motivation

670±60

770

2100

(1967)

(1964)

Bak et al.

Deal et al.

Cross Section Curve of ²⁴¹Am(n,γ) reaction

Partial Decay Scheme

Kyoto University Reactor: KUR @KURRI

Analysis - the Westcott's convention-

$$\frac{R}{\sigma_0} = gG_{th}\phi_1 + \phi_2 \cdot S_0 G_{epi}$$

for irradiation without a Gd shield,

$$\frac{R'}{\sigma_0} = g G_{th} \phi'_1 + \phi'_2 \cdot S_0 G_{epi}$$

for irradiation with a Gd shield. where

 $S_{0} = \sqrt{\frac{4}{\pi}} \cdot \frac{I'_{0}}{\sigma_{0}}$

 I_0 ' is the resonance integral after subtracting the 1/ υ component g: 1.051 for ²⁴¹Am Resonance Integral I_0 $I_0=I_0$ ' + 0.9725 σ_0 for cut-off energy of 0.107 eV

Results of σ_0 and I_0 for the ²⁴¹Am(n, γ)^{242g}Am reaction

Authors & Year	σ _{0g} (b)	I _g (b)	Cut-off Energy(eV)
This Work	628±17	3.5±0.3 k	0.107
JENDL-3.3 (2002)	639.4*	1456 *	
Maidana et al. (2001)	602±9	1665±91	0.5
Fioni et al. (2001)	636±46		
Shinohara et al. (1997)	768±58	1694±146	0.5
Gavrulov et al. (1977)	780±50		
Harbour et al. (1973)	748±20	1330±117	0.369
Bak et al. (1967)	670±60	2100	
Deal et al. (1964)	770		

. ^{241}Am to $^{242m+g}Am$

Result of I₀ for the ²⁴¹Am(n,γ)^{242g}Am reaction

Supplement D:

Thermal-Neutron Capture Cross-Section and Resonance Integral of ⁹⁰Sr(n,γ)⁹¹Sr Reaction

⁹⁰Sr(n, γ)⁹¹Sr reaction Cross-Section

.upper limit just for I_{θ}

Analysis Westcott's convention

$$\frac{R}{\sigma_0} = gG_{th}\phi_1 + \phi_2 \cdot S_0 G_{epi}$$

for irradiation without a Gd shield,

$$\frac{R'}{\sigma_0} = g G_{th} \phi'_1 + \phi'_2 \cdot S_0 G_{epi}$$

for irradiation with a Gd shield. where

$$S_{0} = \sqrt{\frac{4}{\pi}} \cdot \frac{I'_{0}}{\sigma_{0}}$$

 I₀' is the resonance integral after subtracting the 1/υ component
 g : deviation form 1/υ low

Resonance Integral I_0 $I_0=I_0'+0.45\sigma_0$ for cut-off energy of 0.5 eV

Results Thermal Cross Resonance **Author** Section, σ_{θ} (mb) Integral, I_{θ} (mb) 800 ± 500 Zeisel [66] 14.0±2.4 McVey et al. [83] Lone *et al*. [93] **9.7**[±]**0.7** + 1.3 Harada *et al.* [94] 15.3 .160 - 4.2 **Present Work 10.1 ± 1.3** 104±16

Supplement E:

Brief Outline of Analysis In the Basis of Westcott's Convention

$$R = \sigma_0 \cdot \phi_{th} + RI \cdot \phi_{epi}$$
$$R' = RI \cdot \phi_{epi}$$

Cadmium Ratio Method

Cadmium ratio.R_{cd}

$$R_{Cd} = \frac{\sigma_0 \cdot \phi_{th} + RI \cdot \phi_{epi}}{RI \cdot \phi_{epi}} = \frac{\phi_{th}}{\phi_{epi}} \cdot \frac{\sigma_0}{RI} + 1$$

$$R_{Cd,x} = \frac{\phi_{th}}{\phi_{epi}} \cdot \frac{\sigma_{0,x}}{RI_x} + 1$$

$$R_{Cd,Co} = \frac{\phi_{th}}{\phi_{epi}} \cdot \frac{\sigma_{0,Co}}{RI_{Co}} + 1$$

$$RI_{x} = RI_{Co} \frac{(R_{Cd,Co} - 1)}{(R_{Cd,x} - 1)} \cdot \frac{\sigma_{0,x}}{\sigma_{0,Co}}$$

Siple Neutron-Flux notaions

Bare:
$$R / \sigma_0 = \phi_1 \cdot G_{th} + \phi_2 \cdot s_0 \cdot G_{epi}$$

with Cd:
$$R' / \sigma_0 = \phi'_1 \cdot G_{th} + \phi'_2 \cdot s_0 \cdot G_{epi}$$

$$R_x / \sigma_{0,x} = \phi_1 \cdot G_{th,x} + \phi_2 \cdot s_{0,x} \cdot G_{epi,x}$$

$$R'_x / \sigma_{0,x} = \phi'_1 \cdot G_{th,x} + \phi'_2 \cdot s_{0,x} \cdot G_{epi,x}$$

Neutron flux components $\phi_{1,2}, \phi'_{1,2}$

$$R_{x} / \sigma_{0,Au} = \phi_{1} \cdot G_{th,Au} + \phi_{2} \cdot s_{0,Au} \cdot G_{epi,Au}$$

$$R'_{Au} / \sigma_{0,Au} = \phi_{1}' \cdot G_{th,Au} + \phi_{2}' \cdot s_{0,Au} \cdot G_{epi,Au}$$

$$R_{Co} / \sigma_{0,Co} = \phi_{1} \cdot G_{th,Co} + \phi_{2} \cdot s_{0,Co} \cdot G_{epi,Co}$$

$$R'_{Co} / \sigma_{0,Co} = \phi_{1}' \cdot G_{th,Co} + \phi_{2}' \cdot s_{0,Co} \cdot G_{epi,Co}$$

Analysis on the basis of the Westcott's convention

$$\frac{R}{\sigma_0} = gG_{th}\phi_1 + \phi_2 \cdot S_0 G_{epi}$$

for irradiation without a Gd shield,

$$\frac{R'}{\sigma_0} = g G_{th} \phi'_1 + \phi'_2 \cdot S_0 G_{epi}$$

for irradiation with a Gd shield. where

$$S_{0} = \sqrt{\frac{4}{\pi}} \cdot \frac{I'_{0}}{\sigma_{0}}$$

 I₀' is the resonance integral after subtracting the 1/υ component
 g : deviation form 1/υ low

Resonance Integral I_0 $I_0=I_0'+0.45\sigma_0$ for cut-off energy of 0.5 eV

Supplement F:

Others
Motivation

High Level Nuclear Wastes Log-Lived Fission Products.FP's) Minor Actinides.MA's)

Reduction of Disposal Managements. Load to Environment.

Nuclear Transmutation

<u>Cross-Section Data</u> to Evaluate Reaction Rates WRENDA: World Request List for Nuclear Data

> <u>Important FP's.Me's</u> Selection of Nuclides *High Priority Request List*

Transmutability of long-lived fission products
--

Fission product	Decay T _{1/2} (y)	Trans T _{1/2} (y)	Isotopic separation	Transmuta ble (yes/no)
129 I	1.6x10 ⁷	51	no	yes
¹³⁵ Cs	2.3x10 ⁶	170	yes	no
⁹⁹ Tc	2.1x10⁵	51	no	yes
¹²⁶ Sn	1.0x10 ⁵	4.4×10^{3}	yes	no
⁷⁹ Se	6.5x10 ⁴	2.2 .10 ³	yes	no

Reference. NEA2002 Accelerator-driven Systems (ADS) and Fast Reactors (FR) in Advanced Nuclear Fuel Cycles

Example of LSD for the reaction rate of ⁹⁹Tc

