DETERMINING PARTIAL GAMMA-RAY PRODUCTION CROSS-SECTIONS AT BUDAPEST

Zsolt Révay, Tamás Belgya, László Szentmiklósi, Zoltán Kis, Gábor Molnár

Institute of Isotopes, Budapest

Prompt Gamma Activation Analysis

- Based on radiative neutron capture, or (n,γ) reaction
- Prompt gamma radiation is characteristic
 - Energy identifies the nuclide (element)
 - Intensity proportional to mass

• Very linear:
$$\frac{A}{\varepsilon t} = \frac{m}{M} N_A \Phi \sigma_{\gamma}$$
 $\sigma_{\gamma} = \sigma_0 P_{\gamma} \theta$

• Large number of non-characteristic lines...

PGAA facilities at reactors

- Budapest, Japan
- Korea, India, Munich (earlier Switzerland)
- USA: Washington, Texas, Missouri
- Argentina, China?, Brazil?, Portugal?, Morocco?

Earlier PGAA databases

- 1969-70: MIT (Rasmussen-Orphan)
 - 75 elements measured with Ge(Li)
- 1981: Lone table (Chalk River)
 - Compilation of mainly Rasmussen's data
- 1993: IAEA Lone table as an attachment to a report
- 1995: Tuli database (Alfassi's PGAA book)
 - ENSDF data for nuclides, where available
 - The rest is Lone table (Z<20)
 - Only energies and relative intensities
- No analytical database until 1996!!!

Relative method

- Peak area ratios
 - Relative efficiency: $A/(\varepsilon t) = aP_v$
 - Cross-section ratios
 - Mass ratios
 - Concentrations, composition

$$\frac{A_1/\varepsilon_1}{A_2/\varepsilon_2} = \frac{n_1}{n_2} \frac{\sigma_{\gamma,1}}{\sigma_{\gamma,2}}$$

• Comparator: earlier CI, now H

- 2223 keV 0.3326 barn ±0.2%

Thermal cross section

- at low E: 1/*v* law
 - highest reaction rate for cold neutrons
- Thermal crosssection taken for 25meV neutrons
- Westcott *g* factor is used to transform between different T-s, distributions

Budapest PGAA facility

Research Reactor

- 20 MW
- water
 cooled
- water moderated
- thermal flux
 10¹⁴ cm⁻² s⁻¹

Cold neutron source at Budapest

400 cm³ 20 K liquid H₂

Neutron guides

- Curved supermirror guides
- relatively small losses
- low background
- ONLY cold
 neutrons!!!

Budapest PGAA facility

- Comptonsuppressed HPGe
- Coincidence
 measurement?
- Beam chopper

Compton-suppressed HPGe

Flux and background

- Budapest 1997: 2.5×10⁶ cm⁻² s⁻¹
- Budapest 2001: 3×10⁷ cm⁻² s⁻¹
- Budapest 2009: 1.5×10⁸ cm⁻² s⁻¹
- (Garching 2009: 3×10⁹ cm⁻² s⁻¹

3 cps 5 cps 10 cps 300 cps)

Max count-rate: >10,000 cps!!!

The PGAA project in the Institute of Isotopes

History of the PGAA facility

 1992 upgraded reactor starts 1995 first PGAA measurement on the thermal beam 1997–1998 establishment of PGAA data library 1999 – 2000 applications 2001 new cold beam 2002 – 2004 Handbook and Atlas 2006 – revision of data

Calibration

- Efficiency
- Non-linearity
- Peak-shape calibration (asymmetric parts)
- Backgrounds (room, beam-on, etc.)

Efficiency fitted to measured data (¹⁵²Eu, ¹³³Ba, Cl(n,γ)) 50 keV—11 MeV

Non-linearity

- ~ \pm 1channel = \pm 0.7 keV
- It is relatively constant in time
- measured using crystal-spectrometer data of ¹⁵²Eu, ³⁵Cl(n,γ)
- after correction the uncertainty of the peaks is mainly determined by the peak statistics
 - -0.01 keV below 2 MeV
 - -0.1 keV around 8 MeV

Library measurements

- 1. Elemental spectra: to obtain ...
 - Relative positions
 - Relative intensities
- 2. Energy calibration: to absolutize energy scale
 - 2 energies det-d for the 2-point Ecalibration
 - Non-linearity
- 3. Standardization: to absolutize intensity scale
 - efficiency ratios
 - compounds or mixtures

1. Elemental spectra

- Elements
 - Metals
- Oxides
 - Nonmetals
 - Metals
- Other simple compound with low-Xsec elements
 - Carbonates, hydroxides, carbides, nitrates etc.

1. Measurements of elements

<mark>1 H</mark> O		_		1	D O																	-										2	He
<mark>3 Li</mark>	<mark>4 Be</mark> * O																					5	В	6 **	С	7	N	8	0	9	F	10	Ne
CO ₃ , <i>C-F</i>																						С,	H-O	Н		C-D- NO₃	О,	H,	Be	<u>C</u>			
<mark>11 Na</mark> *	<mark>12 Mg</mark> *																					<mark>13</mark> **	AI	<mark>14</mark> *	Si	<mark>15</mark> *	P	<mark>16</mark> **	S	17	CI	<mark>18</mark> *	Ar
 CO ₃ ,C-H-O	-																					-	Ŭ	N	Ŭ		Ŭ			с, <u>с</u>	- <u>H</u>		
<mark>19 K</mark>	20 Ca	21	Sc	22	Ti	<mark>23</mark>	V	<mark>24</mark>	Cr	<mark>25</mark>	Mn	26	Fe	<mark>27</mark>	Co	28	Ni	29	Cu	<mark>30</mark>	Zn	<mark>31</mark>	Ga	32	Ge	<mark>33</mark>	As	<mark>34</mark>	Se	35	Br	<mark>36</mark>	Kr
<u>HCO</u> ₃	* 0 CO₃		<u>0</u>	**	O		<u>0</u>	* (<i>)-</i> Н	*	<u>0</u>	**		-		**		-	0	*	0	_		-	<u>0</u>		0	_ (Э-Н	<u>-</u> C-⊦	<u>1</u>	*	
37 Rb	<mark>38 S</mark> ı	39	Y	40	Zr	41	Nb	42 **	Мо	43	(Tc)	44 **	Ru	45 *	Rh	46 *	Pd	47 **	Ag	48 **	Cd	<mark>49</mark>	In	50	Sn	<mark>51</mark>	Sb	<mark>52</mark>	Те	53 *	I	<mark>54</mark>	Xe
<u>∪</u> CO₃	<u>CO</u> ₃		<u>0</u>		0		0					-		<u>-</u> C-H		-		-				-					0	-			<u>1</u>	<u>F</u>	
55 Cs	<mark>56 Ba</mark>	57	La	72 *	Hf	<mark>73</mark>	Ta	<mark>74</mark>	W	<mark>75</mark>	Re	76 *	Os	77 *	lr	78 *	Pt	79 *	Au	80 **	Hg	<mark>81</mark> *	TI	82 **	Pb	<mark>83</mark>	Bi	84	(Po)	85	(At)	86	(Rn)
	OH, <u>CO</u> ₃		<u>U</u>	_	U		0		0	-		<u>-</u> C-ŀ	- 0 -	-	0	-		-		-	0												
87 (Fr)	88 (Ra)	89 ((Ac)																														

<mark>58</mark>	Ce	59	Pr	60	Nd	61	(Pm)	62	Sm	63	Eu	64	Gd	<mark>65</mark>	Tb	66	Dy	67	Ho	68	Er	69	Tm	70	Yb	71	Lu
	<u>0</u>		<u>0</u>		0				Ο		<u>0</u>		Ο		0	*			0		<u>0</u>		0		0		<u>0</u>
C-F	I-0																										
90	Th	91	(Pa)	92	U																						
					<u>0</u>																						
NO	3			C-H	-0																						

2. Energy calibration

- Energy difference method
- Crystal spectrometer data for ³⁵Cl
- Element measured in presence of CI

3. Standardization

- Stoichiometric compounds
 - Chlorides, nitrates
- Homogeneous mixtures
 - Water solution
 - Water-TiO₂-XO suspension
- Relative to the comparator

$$\sigma_{\gamma,x} = \frac{n_c}{n_x} \frac{A_x / \mathcal{E}(E_x)}{A_c / \mathcal{E}(E_c)} \sigma_{\gamma,c}$$

Intermediate comparators

element	compounds	Comparators	$\sigma_{\gamma}(\text{barn})$	Statistical	Total unc.
				unc. (%)	(%)
H^*			0.3326		0.2
N – 1884	Pyridine, NH ₄ NO ₃ ,	H – 2223	0.01452	0.2	0.4
	NH ₄ Cl, melamine				
C – 4945	Polyethylene, melamine,	H – 2223	0.00259	0.6	0.8
	urea, pyridine	N – 1884			
S – 841	$(NH_4)_2SO_4$	H – 2223	0.353	0.9	1.0
Cl – 1951	NH ₄ Cl, NaCl solutions	H – 2223	6.5095	0.3	0.4

								3)		S	5t	3	31	N	С		a	r	d		Ζ	2	3.	ti	С)r	٦							
<mark>1</mark> alar	H					1	D H			n		e	6	3	S	l	lľ	^e	9	n	N	e)	1	t	S								2	Не
<mark>3</mark> C,I	Li N	4 N,	Be O																					5 H	B	6 H N	C	<mark>7</mark> H	N Cl	<mark>8</mark> H	0	<mark>9</mark> K,C	F ,Ca	<mark>10</mark>	Ne
<mark>11</mark> <i>H</i> S	Na Cl B	<mark>12</mark> H S, <i>I</i>	Mg Cl Fe [*] B																					<mark>13</mark> H S, <i>I</i>	Al Cl Fe [*] B	14 N <i>Fe</i> [°]	Si O	<mark>15</mark> H Na	P	<mark>16</mark> H Na	S , Al	<mark>17</mark> 3H	CI B	<mark>18</mark> absz	Ar z: Cl
<mark>19</mark> H	K Cl B	20 Fe	Ca Cl	21 <i>H</i> S,7	Sc 7i B	<mark>22</mark> Cl	Ti	<mark>23</mark> H	V B	<mark>24</mark> H	Cr Cl	<mark>25</mark> H	Mn Cl B	26 2CI	Fe I	<mark>27</mark> H	Co Cl B	<mark>28</mark> H	Ni Cl B	29 H	Cu Cl	30 Cl	Zn B	<mark>31</mark> H N	Ga B	<mark>32</mark> Co	Ge B	<mark>33</mark> H Na	As B	<mark>34</mark> H	Se B	<mark>35</mark> H	Br C/ B	<mark>36</mark> 1	Kr
<mark>37</mark>	Rb Cl B	<mark>38</mark>	Sr Cl B	<mark>39</mark>	Y Cl B	<mark>40</mark> N	Zr Cl	<mark>41</mark>	Nb Cl	<mark>42</mark>	Mo Cl	43	(Tc)	<mark>44</mark> H	Ru Cl	<mark>45</mark> H	Rh Cl	<mark>46</mark>	Pd Cl	47 H	Aq Cl	<mark>48</mark> H	Cd Cl	<mark>49</mark> Sb	In B	<mark>50</mark> H	Sn Cl	<mark>51</mark> S	Sb	<mark>52</mark> H	Te Cl	<mark>53</mark> H	l Cl	<mark>54</mark> F	Xe
<mark>55</mark>	Cs Cl	<mark>56</mark> H	Ba Cl	<mark>57</mark>	La Cl	<mark>72</mark> H	Hf Cl	<mark>73</mark> H <i>Tï,i</i>	Ta H	<mark>74</mark> H Na	W	<mark>75</mark>	Re Cl	<mark>76</mark> H	Os	77	lr Cl	<mark>78</mark>	Pt Cl	<mark>79</mark> H	Au Cl	80	Hq Cl	<mark>81</mark> S	TI	<mark>82</mark> N	Pb Cl	<mark>83</mark>	Bi Cl	84	(Po)	85	(At)	86	(Rn)
87	(Fr)	88	(Ra)	89	(Ac)									-		-		-						-		-						·			

<mark>58</mark>	Ce	59	Pr	60	Nd	61(Pm)	62	Sm	63	Eu	<mark>64</mark>	Gd	<mark>65</mark>	Tb	66	Dy	67	Ho	68	Er	<mark>69</mark>	Tm	70	Yb	71	Lu
н		Н		Н			Н		Н		Н		Н		Н		Н		Н		Н		Н		Н	
С		S		S			S		S	В	S		S		S		S		Cl		S				S	
<mark>90</mark>	Th	91	Pa	92	U																					
Н				Н																						
Ν	В			С	В																					

PGAA library

z	EI	Α	мw	#	Е	dE	σ	d σ %	RI	Area	cps/g
1	Н	1	1.01	1	2223.259	0.019	0.3326	0.2	100.00	100.00	64.183
1	Н	2	1.01	2	6250.204	0.098	0.000492	5.0	0.15	5.00	0.0286
3	Li	6	6.94	5	477.586	0.050	0.001399	5.9	3.52	10.14	0.1218
3	Li	7	6.94	2	980.559	0.046	0.004365	5.1	10.97	18.74	0.2251
3	Li	7	6.94	3	1051.817	0.048	0.004364	5.1	10.97	17.83	0.2141
3	Li	7	6.94	1	2032.310	0.070	0.0398	5.0	100.00	100.00	1.2007
3	Li	6	6.94	6	6769.633	0.263	0.001354	6.5	3.40	0.84	0.0101
3	Li	6	6.94	4	7246.800	0.275	0.002106	8.4	5.29	1.17	0.014
4	Ве	9	9.01	4	853.631	0.011	0.00165	8.9	26.69	100.00	0.0723
4	Ве	9	9.01	3	2590.014	0.025	0.00188	8.9	30.41	49.08	0.0355
4	Ве	9	9.01	2	3367.484	0.035	0.002924	8.9	47.30	58.96	0.0427
4	Ве	9	9.01	5	3443.421	0.036	0.000993	8.9	16.06	19.54	0.0141
4	Ве	9	9.01	6	5956.602	0.092	0.000146	9.1	2.36	1.41	0.001
4	Ве	9	9.01	1	6809.579	0.099	0.006181	9.0	100.00	48.52	0.0351
5	В	10	10.81	1	477.600	5.000	712.5	0.3	100.00	100.00	39806
6	С	12	12.01	2	1261.708	0.057	0.00123	2.7	45.58	100.00	0.0306
6	С	12	12.01	3	3684.016	0.069	0.001175	3.5	43.53	38.02	0.0116
6	С	12	12.01	1	4945.302	0.066	0.002699	2.9	100.00	60.55	0.0186
7	Ν	14	14.01	22	583.567	0.031	0.000429	3.3	1.81	6.93	0.0159
7	Ν	14	14.01	12	1678.244	0.029	0.006254	1.5	26.34	47.15	0.1085
7	Ν	14	14.01	18	1681.174	0.043	0.001296	2.7	5.46	9.76	0.0225
7	Ν	14	14.01	21	1853.944	0.052	0.000474	4.5	2.00	3.31	0.0076
7	Ν	14	14.01	5	1884.853	0.031	0.0145	1.3	61.07	100.00	0.2301
7	Ν	14	14.01	24	1988.532	0.077	0.000294	5.8	1.24	1.94	0.0045
7	Ν	14	14.01	15	1999.693	0.032	0.003208	1.7	13.51	21.12	0.0486
7	Ν	14	14.01	13	2520.446	0.039	0.004246	1.8	17.88	22.98	0.0529

Verification

- SRM, CRM
- Samples with partly known composition

Verification

<mark>1 H</mark> komp oldatok					<mark>1 D</mark> H																										2	He
<mark>3 Li</mark>	4	Be		-		_															5 <i>H</i> , üve GE	B eg EO	6 kart náto	C po- pk	<mark>7</mark> kon	N np	8 oxi	O dok	9 Ca	F	10	Ne
<mark>11 Na</mark> komp üveg	<mark>12</mark> üve	Mg eg																			13 cei kat GE	Al m, t, EO	<mark>14</mark> üve kat GE	Si g, , O	15 H Na	P	16 kor cer GE	S np n :O	<mark>17</mark> kor	CI np	<mark>18</mark>	Ar
<mark>19 K</mark> SRM	20 SR cer	<mark>Ca</mark> M, n	21	<mark>Sc</mark>	<mark>22 Ti</mark> Cl GEO	23 kat	V	24 SR kat	Cr M,	25 SR GE	Mn M M O	26 SRI GE	Fe M, O	27(olda	Co at	28 kat, ^{fémü}	Ni , üveg	29 Ag-	Cu Cu	30 Zn	<mark>31</mark>	Ga	<mark>32</mark>	Ge	<mark>33</mark>	As	<mark>34</mark>	Se	<mark>35</mark>	Br	<mark>36</mark> 1	Kr
<mark>37 Rb</mark>	<mark>38</mark>	Sr	<mark>39</mark>	Y	40 Zr fémüveg	41 kat	Nb	<mark>42</mark> kat	Mo	43	(Tc)	<mark>44</mark>	Ru	<mark>45 </mark>	Rh	<mark>46</mark> fémű	Pd üveg	<mark>47</mark> Ag-	<mark>Ag</mark> Cu	<mark>48 Cd</mark> SRM GEO	<mark>49</mark>	In	<mark>50</mark> Sn∙	Sn -Cd	<mark>51</mark>	Sb	<mark>52</mark>	Те	<mark>53</mark>		<mark>54</mark>	Xe
<mark>55 Cs</mark>	<mark>56</mark>	Ba	57	La	72 Hf	<mark>73</mark>	Ta	<mark>74</mark>	W	<mark>75</mark>	Re	<mark>76</mark>	<mark>Os</mark>	77	Ir	<mark>78</mark> kat	Pt	<mark>79</mark> kon	<mark>Au</mark> np	<mark>80 Hg</mark>	<mark>81</mark>	TI	82 Pb	Pb -Cd	<mark>83</mark>	Bi	84	(Po)	85	(At)	86	(Rn)
87 (Fr)	88	(Ra)	89	(Ac)																					-				-			

<mark>58</mark>	Ce	5 9	Pr	60	Nd	61(Pm)	62	Sm	63	Eu	<mark>64</mark>	Gd	65	Tb	66	Dy	67	Ho	<mark>68</mark>	Er	69	Tm	70	Yb	71	Lu
											üve	a.				-										
											GE	0														
90	Th	91	Pa	92																						
00				52	U																					

Calculation of uncertainties

$$\sigma_{\gamma,x} = \frac{n_c}{n_x} \frac{A_x / \varepsilon(E_x)}{A_c / \varepsilon(E_c)} \sigma_{\gamma,c}$$

• Uncertainty= statistical + systematic

$$\delta\sigma_{\gamma,x} = \sqrt{\left(\delta A_{\gamma,x}\right)^2 + \left(\delta A_{\gamma,c}\right)^2 + \left(\delta \frac{\varepsilon(E_{\gamma,c})}{\varepsilon(E_{\gamma,c})}\right)^2 + \left(\delta\sigma_{\gamma,c}\right)^2}$$

(mainly) thermal PGAA library

- 1997—2000 measurement, evaluation – 5, 25, 100 lines/element
- IAEA CRP (finished 2000)
 TECDOC (2007)
- 2004 Handbook of PGAA with neutron beams
 - Atlas and catalog: 100 lines/element

Cold PGAA library

- In progress
- 2004 Budapest: 16 elements
- 2009 Budapest + Munich: 19 elements
- Complete revision planned
- Statistical and systematic uncertainties handled separately

Spectra for the atlas

- No visible (or weak) pollution
- Statistics is not so important
- normalization:
 - for 1 g of element
 - for 1 s of acquisition time
- every characteristic peak is fitted

Boron (carbide)

"Invisible container" method

Eu, huge continuum

HANDBOOK OF PROMPT GAMMA ACTIVATION ANALYSIS

HANDBOOK OF PRO

WITH NEUTRON BEAMS

