

Neutron cross section measurements in the resonance region at GELINA

Peter Siegler, Peter Schillebeeckx, Stefan Kopecky

IRMM - Institute for Reference Materials and Measurements

Geel - Belgium

http://irmm.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/

- Introduction
- **GELINA TOF Facility**
- Cross Section Measurements
- Data analysis
- Resonance analysis
- Results: Cd, Rh, Au

- Time-of-flight facility
- Pulsed white neutron source (1 meV < E_n < 20 MeV)
- Multi-user facility with 10 flight paths
 (10 m 400 m)
- The measurement stations have special equipment to perform:
 - Total cross section measurements
 - Partial cross section measurements

Normal Operation Parameters

- Average Current: 75 µAAverage Electron Energy: 100 MeVMean Power: 7.5 kW
- Frequency : 800 Hz Pulse Width : 1 ns Neutron Intensity : 2.5 x 10¹³ n/s

Compression Magnet

Neutron Production

- e⁻ accelerated to $E_{e-,max} \approx 140 \text{ MeV}$
- (e⁻, γ) Bremsstrahlung in U-target (rotating & cooled with liquied Hg)
- (γ, n) , (γ, f) in U-target
- Low energy neutrons by water moderator in Be-canning

Neutron Production

8

SHIELDING for SHIELDING for **MODERATED SPECTRUM FAST SPECTRUM GELINA** 30 m 800 Hz 10⁵ Exp. MCNP ----- Mod. □ Mod. $d\phi_n/dlnE_n/(cm^{-2} s^{-1})$ - Fast Fast 10⁴ 10³ 10^{2} 10⁰ 10² 10⁴ 10⁶ Neutron Energy / eV

Optimization of flight path length in view of <u>neutron flux</u> and <u>resolution</u>!

Basic Principles

Transmission

$$\mathsf{T} = \frac{\mathsf{C}_{\mathsf{in}}}{\mathsf{C}_{\mathsf{out}}} \cong \mathsf{e}^{-\mathsf{n}\sigma_{\mathsf{tot}}}$$

- Incoming flux cancels
- Detection efficiency cancels
- Good geometry

 \Rightarrow Direct relation between T and σ_{tot}

Partial

$$\boldsymbol{C}_r = \boldsymbol{\epsilon}_r \boldsymbol{Y}_r \boldsymbol{A}_r \boldsymbol{\phi}_r$$

- ϕ_r Neutron Fluence Rate
- ϵ_r Detection Efficiency
- A_r Effective area
- Y_r Reaction Yield

(Beam Fraction Undergoing the partial Reaction)

 \Rightarrow Complex relation between C_r and Y_r Y_r related to σ_r and σ_{tot}

Transmission measurements

13

$T \cong e^{-n\sigma_t}$

Good Geometry

- All detected neutrons have traversed the sample
- Neutrons scattered in the target do not reach the detector

Importance of collimation

Transmission Measurements

EFNUDAT, Budapest 23/09/2009, P. Siegler

14

Kopecky and Brusegan, NP A 773, 173 (2006) Borella et al., PR C 76, 014605 (2007)

Detector stations Moderated : L = 30 m, 50 m, (100 m, 200 m) Fast : L = 400 m

Doppler Measurements

EFNUDAT, Budapest 23/09/2009, P. Siegler

Cryostatic sample changer

Temperatures from 10 K - 300 K

Detector station at : L = 30m

A constant and low background during the whole measurement campaign is mandatory !

Capture cross section measurements

Total energy detection

- C₆D₆ liquid scintillators
 - 125°
 - **PHWT** $\int R(E_d, E_\gamma) W F(E_d) dE_d = kE_\gamma$
- Flux measurements (IC)
 - ¹⁰B(n,α)
 - ²³⁵U(n,f)

L = 10 m, 30 m and 60 m

Borella et al., NIM A, 577, 626 (2007) Borella et al., PR C 76, 014605 (2007)

$$Y_{n,\gamma} = \sigma_{\phi} \, \frac{C_w - B_w}{C_{\phi} - B_{\phi}}$$

Neutron flux

 $\mathbf{T}\mathbf{T}$ 10⁰ **10**⁻¹ · Counts/CM3 10⁻⁴ - Net Flux NaBiCo+Ag Net Flux NaBiCo Т 10⁵ 10⁶ 10⁷ 10⁴

TOF (ns)

Capture raw data

<u>Analysis of Generic tof Spectra</u> (AGS)

- Transform count rate spectra into observables (transmission factors, partial reaction yields)
- Full propagation of uncertainties starting from counting statistics
- Output: complete covariance matrix
- Due to the special format used in AGS:
 - We reduce space for data storage (EXFOR)
 - We can verify and document the various sources of uncertainties in each step of the reduction process

Observable Z (dimension n) with k sources of correlated uncertainties

$$C_{Z} = D_{Z} + S_{Z} S_{Z}^{T}$$

- D_Z : uncorrelated part n values
- S_z : correlated part dim. (n x k)

Bastian et al., PHYSOR 2006

Characterisation of GELINA TOF-Facility Collaboration Univ. Delft

23

EFNUDAT, Budapest 23/09/2009, P. Siegler

Flaska et al., NIM A 531, 394 (2004) Flaska et al., NIM A 555, 329 (2005)

10⁵

10⁴

10³

 10^{2}

10⁻²

 $d\phi_n/dlnE_n/(cm^{-2} s^{-1})$

Characterisation of GELINA TOF-Facility

24

Neutron Flux

30 m

Mod.

Fast

MCNP

GELINA

Mod.

Fast

10⁰

Exp.

Neutron Energy / eV

10²

Flaska et al., NIM A , 531, 394 (2004)

Delay distance / m

Resolution Function

Impact of the resolution function

25

0.04 0.04 * Exp. Analytical MCNP RPI (Sammy) 0.02 Yield 0.02 0.00 96 97 95 ¹⁰³Rh + n 0.0.0 0.8 Transmission Factor 0.6 1.0 0.8 0.4 0.6 0.4 0.2 0.2 0.0 **∟** 90 0.0 L 94 95 97 96 100 110 120 Neutron Energy / eV

Resolution Function	E ₀ = 95.7 eV	
(RF)	$\Gamma_{\sf n}$ / ${\sf meV}$	
Capture		
Analytical (REFIT)	2.47 (5)	
MCNP	2.42 (5)	
RPI (fit MCNP RF)	2.50 (5)	
Transmission		
Analytical (REFIT)	2.40 (5)	
MCNP	2.42 (5)	
RPI (fit MCNP RF)	2.40 (5)	

 \Rightarrow RF has an impact on RP deduced from RSA

 \Rightarrow Transmission less sensitive to RF than capture

Kopecky et al., WONDER 2006

Resonance structure

26

A cross section as a function of E_n shows a resonant structure, which can be described by a Breit-Wigner shape :

with

- Γ natural line width (FWHM)
- **E**_R resonance energy

Breit - Wigner formula Resonance part of the cross section

• Total Cross Section (n,tot)

$$\sigma_{t}(E_{n}) = g_{J} \frac{\pi}{k_{n}^{2}} \frac{\Gamma_{n}\Gamma}{(E_{n} - E_{R})^{2} + (\Gamma/2)^{2}} \quad g_{J} = \frac{2J+1}{2(2I+1)}; k_{n} = wavenumber$$
• Elastic Cross Section (n,n)

$$\sigma_{n}(E_{n}) = \sigma_{t}(E_{n}) \frac{\Gamma_{n}}{\Gamma}$$
• Capture Cross Section (n, γ)

$$\sigma_{\gamma}(E_{n}) = \sigma_{t}(E_{n}) \frac{\Gamma_{\gamma}}{\Gamma}$$

Neutron width s-wave <--> p-wave (I > 0)

29

$$\sigma_{\gamma}(\mathsf{E}_{\mathsf{n}}) = \mathsf{g}_{\mathsf{J}} \frac{\pi}{\mathsf{k}_{\mathsf{n}}^{2}} \frac{(\Gamma_{\mathsf{n}})\Gamma_{\gamma}}{(\mathsf{E}_{\mathsf{n}} - \mathsf{E}_{\mathsf{R}})^{2} + (\Gamma/2)^{2}}$$

 Γ_n depends on E_n : due to the centrifugalbarrier penetrability, which depends on the angular momentum of the incoming neutron ℓ and E_n

(penetration probability depends on ℓ)

• **s-wave**
$$\Gamma_n(E_n) = \Gamma_n^0 \sqrt{\frac{E_n}{1eV}}$$

• **p-wave**
$$\Gamma_n(E_n) = \Gamma_n^1 \sqrt{\frac{E_n}{1eV}} \frac{k_n^2 a^2}{1 + k_n^2 a^2}$$

 \Rightarrow cross section at 0.025 eV (Thermal)

$$\sigma_r^{th} \approx 4.099.10^6 \left(\frac{A+1}{A}\right)^2 \sum_{j=1}^{N} \frac{g_J \Gamma_{nj}^0 \Gamma_{rj}}{E_{Rj}^2}$$

σ_{th} and contribution of s-wave resonances

 $\sigma_{_{\rm o}}$, total 10⁶ σ_{v} for $E_r = 1 \text{ eV}$ $\sigma_{\rm e}$ for E_r = - 1 eV 10⁴ $\sigma(n,\gamma)$ / barn 10² 10⁰ 10⁻² 10⁻³ **10**⁻¹ **10**¹ Neutron Energy / eV

$$\sigma^{th} > \sigma^{th}_{E>0} \cong 4.099.10^6 \left(\frac{m_A + 1}{m_A}\right)^2 \sum_{j=1}^N \frac{g_J \Gamma_{nj}^0 \Gamma_{\gamma j}}{E_{Rj}^2}$$

•Additional contribution from bound states (negative resonances)

JRC

EUROPEAN COMMISSION

• (n,
$$\gamma$$
)

$$\sigma_{\gamma}(E_{n}) = g_{J} \frac{\pi}{k_{n}^{2}} \frac{\Gamma_{n}\Gamma_{\gamma}}{(E_{n} - E_{R})^{2} + (\Gamma/2)^{2}}$$

$$\Gamma = \Gamma_{n} + \Gamma_{\gamma}$$

$$g_{J} = \frac{2J+1}{2(2I+1)}$$

$$R = (0.80 + 1.23A^{1/3}) \text{fm}$$

• (n,n)

$$\sigma_{n}(E_{n}) = g_{J} \frac{\pi}{k_{n}^{2}} \frac{\Gamma_{n}\Gamma_{n}}{(E_{n} - E_{R})^{2} + (\Gamma/2)^{2}} + g_{J} \frac{4\pi}{k_{n}} \frac{\Gamma_{n}(E - E_{R})R}{(E_{n} - E_{R})^{2} + (\Gamma/2)^{2}} + g_{J} 4\pi R^{2}$$

Total

$$\sigma_{\text{tot}}(\mathsf{E}_{\mathsf{n}}) = \mathsf{g}_{\mathsf{J}} \frac{\pi}{\mathsf{k}_{\mathsf{n}}^{2}} \frac{\Gamma_{\mathsf{n}}\Gamma}{(\mathsf{E}_{\mathsf{n}} - \mathsf{E}_{\mathsf{R}})^{2} + (\Gamma/2)^{2}} + \mathsf{g}_{\mathsf{J}} \frac{4\pi}{\mathsf{k}_{\mathsf{n}}} \frac{\Gamma_{\mathsf{n}}(\mathsf{E} - \mathsf{E}_{\mathsf{o}})\mathsf{R}}{(\mathsf{E}_{\mathsf{n}} - \mathsf{E}_{\mathsf{R}})^{2} + (\Gamma/2)^{2}} + \mathsf{g}_{\mathsf{J}} 4\pi \mathsf{R}^{2}$$

33

- In ideal conditions, without any instrumental resolution broadening, we can determine $\sigma_{o}\Gamma_{\gamma}/\Gamma$ and Γ from one experiment.
 - $\Rightarrow \Gamma_{\gamma} \text{ and } \Gamma_{n} \qquad \qquad \sigma_{o} = f(g_{J}, \Gamma_{n}, \Gamma)$

However,

- Due to instrumental limitations it is mostly impossible to determine Γ and $\sigma_o \Gamma_\gamma / \Gamma$
- Due to the instrumental limitations the effective experimental observable is mostly:

the area of a resonance

Experimental observables

⇒ Ideally : combine thin capture measurements with transmission measurements on samples with different thicknesses

Determination of resonance parameters

37

• Cadmium

Cd - Previous Experiments

	sample	energy	Γγ [meV]	Г п [mev]	
Rainwater	metal	0.176+/-0.002	115 +/- 2	0.620 +/- 0.020	
Brockhouse	metal	0.180 +/- 0.003	113 +/- 2	0.680 +/- 0.020	
Akyuz	metal	0.181 +/- 0.003	109 +/- 3	0.645 +/- 0.025	
Widder	powder	0.1776 +/- 0.0006	114.3 +/- 0.6	0.618 +/- 0.003	
Harz	various	0.1783 +/- 0.0002	113.5 +/- 0.5	0.650 +/- 0.005	

^{nat}Cd - measurements

thickness (atoms/barn)	type	flight path length
1.38 10 ⁻⁴	capture	10 m
3.40 10 ⁻⁴	capture	10 m
5.40 10 ⁻⁴	transmission	50 m
1.10 10 ⁻³	capture	30 m
2.36 10 ⁻³	capture	30 m
4.67 10 ⁻³	capture	30 m
9.34 10 ⁻³	capture	10 m
	transmission	25 m, 50 m
2.34 10 ⁻²	transmission	50 m
1.20 10 ⁻¹	transmission	25m, 50m

40

10 ਜਾ sample in sample + black Cd-filter fitted BKG 1 counts / CM 0.1 0.01 L I. Alad للرقط والار الارسار ووالما والرور 0.01 100 0.1 10 1 neutron energy [eV]

Energy Calibration -> 238U

41

EFNUDAT, Budapest 23/09/2009, P. Siegler

Experimental Results

Resonance Parameters – first resonance

43

EUROPEAN COMMISSION

Probability that a neutron "sees" n particle, given by Poisson-statistics

Fit to Widder et al. (1/3)

46

Calculation using parameters given by Widder et al.

Fit to Widder et al. (2/3)

Fit to Widder et al. (3/3)

49

Conclusion: Widder et al. did a good experiment but their sample was not homogenius.

Cd Resonance Parameters

thickness
(at/b)sample typeflight path
length1.40 10-4solution25 m1.36 10-4foil25m2.24 10-4foil25 m

Only uncorrelated uncertainties

Parameter	p / meV			ρ (p i ,p j)		
E _R	178.7	±	0.1	1.00	0.43	0.79
Γn	0.640	±	0.001		1.00	0.43
Γγ	113.5	±	0.2			1.00

Full Covariance Matrix

Parameter	p / meV			ρ (p i, p j)		
E _R	178.7	±	0.1	1.00	0.53	0.28
Γn	0.640	±	0.004		1.00	0.25
Γ_{γ}	113.5	±	0.2			1.00

- capture/transmission RSA analysis finalized up to 1.5 keV
- input to the IRDF 2009 (IAEA) up to 1 keV
- consistency check including comparisons with results on enriched samples
- Thermal point difficult since Cd is not monoisotopic (but dominated by ¹¹³Cd)
- comparisons with integral experiments (impact of first resonance parameters) (see NIMB 267)

52

EFNUDAT, Budapest 23/09/2009, P. Siegler

Rhodium

Transmission ¹⁰³Rh

Transmission ¹⁰³Rh

10 0 124,5 125,0 125,5 124,0 0 95,5 110 energy [eV]

126,0

126,5

127,0

10-

0-

94,5

95,0

enerc

Resolution function 80-150 eV

59

• Gold

4.9 eV resonance for ¹⁹⁷Au+n

0.2

0.0

T_{M,REFIT} ×

4.0

4.5

5.0

Neutron Energy / eV

5.5

6.0

4.9 eV resonance for ¹⁹⁷Au+n

10⁻³ – 4.0

4.5

5.0

Neutron Energy / eV

5.5

4.9 eV resonance for ¹⁹⁷Au+n

=

_

62

C_{Y,exp}: only uncorrelated uncertainties due to counting statistics

$$\Rightarrow \Gamma_{n} = (15.31 \pm 0.12) \text{ meV}$$

$$\Rightarrow \Gamma_{\gamma} = (118.0 \pm 1.4) \text{ meV}$$

$$\rho(\Gamma_{n}, \Gamma_{\gamma}) = -0.50$$

$$\Gamma_{n} = (15.26 \pm 0.15) \text{ meV}$$

$$\Rightarrow \Gamma_{\gamma} = (118.9 \pm 1.2) \text{ meV}$$

$$\rho(\Gamma_{n}, \Gamma_{\gamma}) = -0.63$$

RSA by REFIT

4.9 eV resonance for ¹⁹⁷Au+n

EFNUDAT, Budapest 23/09/2009, P. Siegler

Measurements	$\Gamma_{\sf n}$ / meV	Γ_{γ} / meV	ρ(Γ _n , Γ _γ)
T1	15.06 ± 0.08	121.7 ± 1.3	0.55
Τ2	14.66 ± 0.30	124.8 ± 3.7	- 0.96
C1	15.31 ± 0.12	118.0 ± 1.4	- 0.50
C2	15.26 ± 0.15	118.9 ± 1.2	- 0.63
T1 + C1	15.14 ± 0.07	120.0 ± 1.0	0.06
T1 + C2	15.10 ± 0.07	120.2 ± 0.9	- 0.29
T1 + T2 + C1 + C2	15.14 ± 0.06	119.8 ± 0.7	- 0.47

ld-number	Measurement	Distance	Angle	Target thickness
			(flight path – moderator)	
T1	Transmission	50 m	9°	10 µm
T2	Transmission	50 m	9 °	50 μm
C1	Capture	30 m	0 °	5 μm
C2	Capture	12 m	18°	5 μm

Please have a look at:

65

• 14:30-15:00

Cristian Massimi et al.: The neutron resonance parameters of ¹⁹⁷Au from transmission, capture and self-indication measurements at GELINA.

- Design and control of experimental parameters is of paramount interest for precise cross section measurements.
- Combination of transmission and capture measurements
- Dedicated measurements in thermal flux are useful
- Cd: capture and transmission final up to 1.5 keV
- Rh: measurements finished; analysis: "fine-tuning"
- Au: completed; see C. Massimi et al.