Validation of nuclear cross section data by activation experiments

<u>A. Trkov</u>, L. Snoj, R, Jaćimović, P .Rogan, G. Žerovnik, M. Ravnik

> Jožef Stefan Institute Ljubljana, Slovenia Andrej. Trkov@ijs.si

Content

- TRIGA reactor and applications
- purpose of the project
- methods
- experiment
- calculations
- results
- Example:
 - Rhodium data validation

JSI TRIGA reactor

- research reactor used for:
 - Training
 - Research
 - Isotope production
- manufactured by
 - General Atomics
- main advantages:
 - simple design
 - inherently safe
 - easy to operate
 - reletively cheap

TRIGA Mark II at
Jozef Stefan Institute,
Ljubljana, Slovenia
(max. power ≈ 250 kW)

JSI TRIGA - applications

- source of neutrons
- neutron activation analysis (NAA)
- operator training
- neutron radiography
- isotope production
- testing of electronic components
- irradiation of particle detectors (CERN)

Neutron spectrum characterisation project

- Gain knowledge about neutronic properties of the reactor.
- Develop reactor analysis tools and methods.
- Characterise neutron spectrum of irradiation facilities.
- Improve the accuracy and reliability of NAA.
- Resolve some discrepancies between nuclear constants for NAA and differential data.
- Related to an IAEA coordinated research project.
- Related to bilateral collaboration with CEA.

Methods

- Detailed computational model
- Series of experiments:
 - validation of computational model for spatial neutron flux distribution
 - neutron spectrum unfolding by combination of calculated spectra and multi-monitor foil activation
 - Validation of cross sections

Experiment 1

Validation of spatial neutron flux distribution

- disks of Al (99.9 w/o)-Au (0.1 w/o)
- 33 irradiation channels (6 in the core, 27 in the carousel facility in the reflector)
- irradiation for 73 min at 250 kW
- measured activity of $^{198}\text{Au}(n,\!\gamma)^{198}\text{Au}$ and $^{27}\text{Al}(n,\!\alpha)^{24}\text{Na}$

Experiment 2

Neutron spectrum unfolding

- 4 irradiation channels (1 core centre, 2 core periphery, 1 carrousel facility in the reflector)
- monitors
 - Al (99.9 w/o)-Au (0.1 w/o)
 - Ni (80.93 w/o)- Mo (15.16 w/o)-W (2.76 w/o)- Mn (0.41 w/o)- Au(0.29 w/o)
 - Zr (99.8 w/o), Zn (99.99 w/o), W(99.95 w/o), Fe
 - Al (99.55 w/o)-U (0.449 w/o)
 - Al (99.18 w/o)-Th (0.819 w/o) ...
- reactions ...

Experiment 2 (cont'd)

• reactions

 $-{}^{27}\text{Al}(n,\alpha), {}^{27}\text{Al}(n,\gamma), {}^{197}\text{Au}(n,\gamma)$

- ${}^{58}\text{Ni}(n,p), {}^{92}\text{Mo}(n,p), {}^{64}\text{Ni}(n,\gamma), {}^{98}\text{Mo}(n,\gamma), {}^{100}\text{Mo}(n,\gamma), {}^{55}\text{Mn}(n,\gamma), {}^{186}\text{W}(n,\gamma), {}^{198}\text{Au}(n,\gamma)$
- $-{}^{90}Zr(n,p), {}^{90}Zr(n,2n), {}^{94}Zr(n,\gamma), {}^{96}Zr(n,\gamma)$
- ${}^{66}Zn(n,p), {}^{64}Zn(n,\gamma), {}^{68}Zn(n,\gamma), {}^{70}Zn(n,\gamma)$

 $-^{238}$ U(n, γ), 232 Th(n, γ), 186 W(n, γ)

Computational model

- MCNP5 computer code
- detailed geometry model including structures in the reactor pool
- sensitivity study
 - structures around the core
 - temperature
 - fuel burnup, xenon
 - reflector density
 - impurities in the reflector

Jozef Stefan Institute, Ljubljana, Slovenia

MCNP model – top view

Status

Computational model development

- geometrical model completed
- sensitivity study completed

1st experiment

– measurement and analysis completed

2nd experiment

- measurement completed, analysis in progress

Results

C_a - Neutron flux attenuation factor in carrousel facilty relative to central channel (CC).

Conclusions on Experiment 1

- thermal flux in the carrousel facility drops by a factor of 7 compared to the central channel
- calculations underpredict the thermal flux attenuation in the reflector by approx. 10 %
- very good prediction of fast flux attenuation
- discrepancies between measurements do not exceed 5 % for thermal flux and 10 % for fast flux
- neutron spectra analysis is in progress neutron selfshielding is investigated in detail

rast neutron nux

Fower

Neutron spectrum characterisation

- Detailed spectrum in 640-groups by MC calculation
- Fit by smooth analytical function (up to 19 parameters)
- Modulation of smooth function to restore detailed shape
- Adjust parameters of analytical function to improve agreement with measured activities

Spectrum analytic function

$$\begin{split} \psi_{t} &= C_{t} E^{n} \left[e^{-E/kT} + C_{t1} e^{-E/kT_{1}} + C_{t2} e^{-E/kT_{2}} \right] \\ \psi_{e} &= E^{-\left[1 + \alpha_{0} + \alpha_{1} \log E + \alpha_{2} (\log E)^{2}\right]} \\ \psi_{f} &= C_{f} e^{-E/W} \sinh\left(\sqrt{EW_{b}}\right) \cdot \frac{1}{E^{m_{0} + m_{1}E}} \quad or \\ C_{f} \sqrt{E} e^{-E/E_{T}} \cdot \frac{1}{E^{m_{0} + m_{1}E}} \end{split}$$

$$\psi = K_t \,\psi_t + K_e \,\psi_e + K_f \,\psi_f$$

Jozef Stefan Institute, Ljubljana, Slovenia

Results – Central Channel (CC)

Comparison of measured and calculated react. Rates (prelim.)

Target		Ratio			Ratio	Dif[%] Unc[%]
Al- 27g	(n , g)	Tot/Tot	Au-197g	(n,g)	9.040E-4	1.3 (2.8)
Al- 27g	(n,p)	Tot/Tot	Au-197g	(n,g)	1.697E-5	0.7 (2.8)
Al- 27g	(n , a)	Tot/Tot	Au-197g	(n,g)	3.232E-6	-0.3 (2.9)
Zr- 90g	(n,2n)	Tot/Tot	Au-197g	(n,g)	5.235E-7	-1.9 (3.0)
Mo-100g	(n , g)	Tot/Tot	Au-197g	(n,g)	2.672E-3	1.6 (3.8)
Mo- 98g	(n , g)	Tot/Tot	Au-197g	(n,g)	3.660E-3	-1.3 (2.9)
Zn- 64g	(n,p)	Tot/Tot	Au-197g	(n,g)	1.624E-4	-2.7 (3.0)
Al- 27g	(n , a)	Tot/Tot	Au-197g	(n,g)	3.232E-6	3.3 (2.9)
U -238g	(n , g)	Tot/Tot	Au-197g	(n,g)	0.1170	0.7 (2.8)
U -238g	(n , g)	Tot/Tot	Au-197g	(n,g)	0.1170	0.2 (2.8)
Al- 27g	(n , g)	Tot/Tot	Au-197g	(n,g)	9.040E-4	0.0 (3.0)
Al- 27g	(n , g)	Tot/Tot	Au-197g	(n,g)	9.040E-4	-3.9 (3.2)
Au-197g	(n , g)	Tot/Cad	Au-197g	(n,g)	1.6102	0.6 (2.8)
U -238g	(n , g)	Tot/Cad	U -238g	(n,g)	1.1268	0.1 (2.9)
U -238g	(n , g)	Tot/Cad	U -238g	(n,g)	1.1268	1.1 (2.9)
U -238g	(n,g)	Tot/Cad	U -238g	(n , g)	1.1268	0.2 (2.9)
U -238g	(n,g)	Tot/Cad	U -238g	(n,g)	1.1268	3.3 (2.9)

5

Results (Cont.)

- More than 190 measured points accumulated (different gamma lines, samples, measuring campaigns)
- 17 measurements selected (reliability of cross sections, optimal measuring conditions, known problems, etc.).
- Selected measurements reflect precision and reproducibility.
- Similar analysis for IC40 channel.

Data validation by activation experiments

- Data validation is the inverse of spectrum unfolding
- Reliable (trusted) data are used to adjust the spectrum
- Reliable spectrum can be used to adjust uncertain cross section data

Cadmium data verification

- Evaluated isotopic data files were obtained from IRMM
- Cross sections for natural element were reconstructed from isotopic data
- Comparison with IRDF-2002 (=IRDF90)

Definitions

 $F_{cd} = \frac{\int_{0}^{\infty} t(E)\sigma(E)\varphi(E) dE}{\int_{E_{cd}}^{E_{3}} \sigma(E)\varphi(E) dE}$ Cadmium factor

 $t(E) = e^{-N_{cd} d \sigma_{cd}(E)}$

Flux attenuation due to Cd

 $N_{cd} = \frac{\rho_{cd} N_A}{M_{cd}}$

.

Cd number density

Differences in $F_{Cd} > 1\%$

	IRDF-90	IRMM	Differen	Ce [%]
56-Ba-130g	0.862	0.998	15.8	Interference?
48-Cd-110g	0.751	0.782	4.1	
27-Co- 58g	1.520	1.481	-2.6	
48-Cd-114g	0.903	0.925	2.4	
56-Ba-140g	0.878	0.897	2.2	
46-Pd-107g	0.958	0.977	1.9	
34-Se- 74g	0.861	0.877	1.9	
34-Se- 78g	0.952	0.969	1.8	
90-Th-232g	0.976	0.992	1.6	First resonance
37-Rb- 86g	0.954	0.969	1.6	
96-Cm-242g	0.972	0.987	1.5	
54-Xe-132g	0.963	0.975	1.3	
48-Cd-112g	0.932	0.920	-1.2	
48-Cd-111g	0.892	0.903	1.2	

Current problems

Analysis of self-shielding factors:

- Paper published recently in NIM (Trkov et al: On the self-shielding factors in neutron activation analysis)
- Measurements on pure Rh samples of different thickness
- Verification of simple MATSSF approach
- Validation with detailed Monte Carlo calculations

Rhodium data validation

- Two samples of different thicknesses were obtained from IRMM.
- They were irradiated and measured.
- More samples of different thicknesses will be analysed to validate the self-shielding correction procedures.
- Consistency of differential data and integral measurements will be tested.

Steps

- Check consistency using existing data.
- Compare with differential data.
- Derive improved constants.
- Preliminary analysis completed.
- Further work is in progress.

Calculated concentrations

Sample	Irr.Ch.	Bare	Cd-box	
		Conc.(%)	Cond	C. (%)
Rh1	PT	87.9	79.3	No corr.
0.006mm		91.3	90.4	MATSSF
		91.4	90.9	MCNP
	IC40	89.5	80.8	No corr.
		93.0	92.0	MATSSF
		93.1	92.5	MCNP
Rh2	PT	67.1	35.9	No corr.
0.112mm		90.3	96.1	MATSSF
		90.9	92.3	MCNP
	IC40	72.2	35.6	No corr.
		96.7	95.2	MATSSF
		97.4	91.4	MCNP

:

New Constants

Preliminary estimates:

 $Q_0 = 6.37(12)$ -5.6 % from ref. $k_0 = 6.68(8)$ E-2 -3.5 % from ref.

Check E_r , F_{Cd} , $g \dots$ Check σ_0 and RI= $Q_0 \cdot \sigma_0$ from differential data \dots

Note:

- $-Q_0$: no dependence on detector efficiency and gamma-ray emission probability P_g
- Conversion from k_0 to σ_0 requires assumptions about P_{g_0}

Conclusion

- Combination of computational model and activation measurements works well for spectrum determination.
- Methodology for calculating self-shielding factors seems to work.
- Further measurements are in progress.
- Integral activation measurements can be used for data validation.

