

Akadémiai Kiadó Budapest

NUCLEAR MEASUREMENTS IN INDUSTRY

SÁNDOR RÓZSA

Institute of Isotopes of the Hungarian Academy of Sciences Budapest, Hungary

AKADÉMIAI KIADÓ · BUDAPEST 1989

CONTENTS

Preface XI

1.	Basic concepts 1
I.I.	Isotopes and radioactivity 2
1.2.	Basic laws and units of radioactivity 4
1.3.	Radiation sources 13
1.3.1.	Characteristics of sealed radiation sources 13
1.3.2.	The checking and criteria of hermeticity 17
1.3.3.	The use and commerce of radiation sources 17
1.4.	Interaction of radiation with material 19
1.4.1.	α-radiation 20
1.4.2.	β -radiation 22
1.4.3.	γ-radiation 30
1.4.4.	Neutron radiation 38
2.	Radiation detection systems 42
2.1.	Ionization chamber 47
2.2.	Proportional counter 51
2.3.	Geiger-Müller counter 54
2.4.	Semiconductor detector 63
2.5.	Scintillation counter 68
2.5.1.	Scintillators 70
2.5.2.	Photomultiplier tube 79
2.5.3.	Stabilization of the operation 85
2.5.4.	Scintillation spectrometry 88
2.5.5.	Scintillation detector with semiconductor light sensor 89
2.6.	Detectors of industrial nuclear instruments 91
3.	Measuring methods and measuring instruments 98
3.1.	Isotopic measuring methods 98
3.1.1.	Direct measurement 98
3.1.2.	Measuring differences 99
3.1.3.	Compensating measurements 101
3.1.4.	Automatic calibration 102
3.2.	Statistical measuring error 102
3.3.	Radioisotopic measuring instruments 104
3.3.1.	Electronic systems of signal processing 106
3.3.2.	Universal measuring systems 109
3.3.3.	Intelligent measuring instruments 111
3.3.4.	Multichannel measuring devices 113
3.4.	Control systems 115

- 4. Indication of limit values 119
- 4.1. Radioisotopic indication of limit values (γ-relays) 119
- 4.2. Versions of radioisotopic equipment for appropriate solutions to limit-value indicating problems 123
- 4.3. Application of level indicator γ-relays 133
- 4.4. Application of level indicators in automatic control 139
- 5. Level measurement 146
- 5.1. Absorption level-measuring instruments 146
- 5.2. Hunting level-measuring instruments 153
- 5.3. Gamma location profile measurements 159
- 5.4. Level control with radioisotopic detection 161
- 5.5. Level-measurement and technological supervision 164
- 6. Thickness measurement 165
- 6.1. Thickness measurement with radioisotopes 165
- 6.2. Radioisotopic thickness-measuring devices 170
- 6.3. Applications for thickness-measuring devices 178
- 6.4. Controlling thickness (surface mass) 185
- 6.5. Technological supervision with thickness-measuring instruments 192
- 7. Measuring the coating thickness 196
- 7.1. Measuring the coating thickness based on the β -reflection technique 196
- 7.2. Coating thickness-measuring devices based on β -radiation reflection technique 199
- 7.3. Application of layer thickness-measurement with β -radiation reflection principle 204
- 7.3.1. Determining the thickness of tin coatings 204
- 7.3.2. Measuring the thickness of zinc coatings 205
- 7.3.3. Measuring the thickness of silver coatings 206
- 7.3.4. Measuring the thickness of gold coatings 207
- 7.3.5. Measuring the thickness of double layers 207
- 7.3.6. Measuring the thickness of plastics and paint coatings 208
- 7.3.7. Measuring the thickness of other coatings 208
- 7.3.8. Measuring the layer thickness in bore-hole electroplating 209
- 7.4. Measuring the layer thickness with X-ray fluorescence 209
- 8. Density measurement 214
- 8.1. Density measurement with γ -radiation absorption 215
- 8.2. Designing the measuring locations 219
- 8.2.1. Fullness of the measuring bin 220
- 8.2.2. Air bubbles 220
- 8.2.3. Sedimentation in the measuring pipe 220
- 8.2.4. Wearing of the measuring pipe 221
- 8.2.5. Selecting the absorption length 222
- 8.2.6. Ensuring the possibility for calibration 223
- 8.3. Density measuring instruments 224
- 8.4. Application of radioisotopic density meters 227

IX

	CONTENTS
9.	Measuring moisture content 235
9.1.	Measuring moisture content using the neutron moderation method 235
9.2.	Technological applications for moisture gauges 243
9.2.1.	Producing mixtures with constant moisture content 244
9.2.2.	Feeding specific amounts of moisture 246
9.2.3.	Feeding with weight correction 247
10.	Determining material composition with nuclear instruments 250
10.1.	Instruments working with radiation absorption 251
10.1.1.	Application of absorption of β-radiation 251

- 10.1.2. Application of absorption of γ-radiation 251
- 10.2. Measuring by radiation reflection (scattering) 259
- 10.2.1. Application of β -radiation reflection 259
- 10.2.2. Application of γ-radiation reflection 261
- 10.3. Measuring secondary radiation 263
- 10.3.1. Measuring secondary radiation generated by β -radiation 265
- 10.3.2. Measuring secondary radiation generated by γ-radiation 265
- 10.3.3. Measuring fluorescence radiation 265
- 10.4. Application of neutron radiation 271
- 10.4.1. Activation analysis 271
- 10.4.2. Application of spontaneous nuclear reactions 272
- 10.4.3. Application of absorption and scattering of neutrons 273
- 10.5. The selective interaction of γ -radiation 274
- 10.6. Determination of material composition based on natural radioactivity 275
- 11. Other industrial applications of nuclear methods 277
- 11.1. Continuous measurement on conveyor belts 277
- 11.2. Checking package filling 280
- 11.3. Smoke detection with α-radiation absorption 282
- 11.4. Eliminating static charges 283
- 11.5. Portable nuclear instruments 283
- 11.5.1. Measuring the density and moisture content of soils 284
- 11.5.2. Wall-thickness measurement with reflection technique 289
- 11.5.3. Level-finding gauges 290
- 12. Establishing radioisotopic measuring devices in industry
- 12.1. The proper selection of devices and data acquisition 292
- 12.2. Planning applications 293
- 12.3. Operation on site 295
- 12.4. Radiation protection 296
- 12.4.1. Basic principles 296
- 12.4.2. Radiation source containers

Literature 303

Subject index 305