BNC	Experiment title	Proposal No.	
Experimental Report	Determination of thermal equivalent neutron	PGAA00/01	
	fluxes along the neutron guides at BNC	Local contact	
		Zs. Révay	
Principal proposer:	Date(s) of Exp.		
László Rosta, Research Institu	22-Nov-2000		
Gábor L. Molnár, Institute of Is	11-Dec-2000		
Experimental team:	02-Feb-2002		
Zsolt Révay, Institute of Isotop	Date of Report		
		28-Feb-2002	

Objectives

The aim was to determine the neutron fluxes at different positions of the neutron guides.

Results

Gold foils were irradiated to determine the thermal equivalent neutron fluxes at several positions of the neutron guides at different phases of the installation of the cold source. The thermal power of the reactor was 10 MW. Gold foils covered with cadmium were also activated to measure the epithermal component of the beam. Irradiation times were typically 20—40 minutes, and 2 hours, respectively. The 411 keV gamma-line from ¹⁹⁸Au decay was counted using the HPGe-BGO detector system of the PGAA facility. The statistical error of the counting was better than 2%. The resulting neutron fluxes are shown in Table 1. The real density of neutrons is 3—4 times less according to the increased reaction rate in the cold beam. Where two flux values are given, two foils were placed on the left and right sides of the beam cross section to determine the inhomogeneity of the beam.

Table 1. Thermal equivalent neutron fluxes and thermal/epithermal ratios along the neutron guides. Fluxes are given in $\text{cm}^{-2} \text{ s}^{-1}$.

Cold source	No		No		25 K			16 K
Vacuum	No		Yes		Yes			Yes
Distance from the reactor wall	Guide 1	Guide 2	Guide 1	Guide 2	Guide 1	Guide 2	Guide 3	Guide 1
6 m	$9.5 \cdot 10^7$ $f = 238$	$1.35 \cdot 10^8$ f = 207	$1.7 \cdot 10^8$ f = 318	$2.3 \cdot 10^8$ $f = 200$	1.03·10 ⁹	$1.18 \cdot 10^9$ f = 1460	1.01·10 ⁹	
9 m						$7.2 \cdot 10^8$		
12 m							$7.7 \cdot 10^8$	
(Reflectometer)							$7.3 \cdot 10^8$	
16.6 m (TAS)					$5.72 \cdot 10^8$			
22 m (SANS)					$3.1 \cdot 10^8$ $2.8 \cdot 10^8$	$1.6 \cdot 10^8$ $2.2 \cdot 10^8$		
33 m (PGAA)								$3.1 \cdot 10^8$

References

Not published.

Future prospects

The neutron fluxes for the improved (16 K) cold beam will be determined at the other facilities as well.