BNC Experimental Report	Experiment title Non-destructive determination of ²³⁵ U/ ²³⁸ U isotope ratio by PGAA	Proposal No. Local contact Zsolt Révay
Principal proposer: G. L. Molnár, Institute of Isotope and Surface Chemistry, CRC Budapest Experimental team:		Date(s) of Exp. 1998
Zs. Révay, T. Belgya, G. L. Molnár Institute of Isotope and Surface Chemistry CRC Budapest, H-1525		Date of Report 20-Dec-99

Objectives

To develop a non-destructive method to determine the isotopic enrichment of uranium.

Results

A non-destructive method has been developed to determine the $^{235}\text{U}/^{238}\text{U}$ ratio in materials containing uranium as a major element. Three uranium-oxide (U_3O_8) samples have been irradiated: one of them had natural isotopic composition, and two were enriched to 19.1% and 36% ^{235}U content, respectively. Intensities of prompt-gamma lines from $^{235}\text{U}(n,\gamma)$ reaction and from some fission products have been compared to the intensity of a high energy line from the $^{238}\text{U}(n,\gamma)$ reaction, and a linear correlation has been found. Hence, PGAA is suitable for rapid and non-destructive determination of the enrichment of uranium samples.

References

Zsolt Révay, Gábor Molnár, Tamás Belgya, ?szi Radiokémiai Napok, Paks, 1998, talk

Future prospects

A detailed examination of 235 U prompt gamma-ray spectrum and γ - γ coincidences are planned.