IRRADIATION FACILITIES

in Hungary

with regards to the investigation of radiation tolerance (resistance/susceptibility) of equipment and material (e.g. electronic devices and optical cables)

Gamma Irradiation Facility

Electron Accelerator

Budapest Research Reactor

Neutron, Gamma and Beta Irradiator Labs

Training Reactor

ATOMKI

October 2003

Compiled by Dr. Tamas Biro, Scientific Advisor, Robert Chobola, Research Fellow Institute of Isotopes, Hung. Acad. Sci., Budapest, Hungary Updated: August 2006

CONTENTS

- 1. Overview
- 2. Gamma Irradiation Facility
- 3. Electron Accelerator
- 4. Budapest Research Reactor
- 5. Neutron, Gamma and Beta Irradiator Labs
- 6. Training Reactor
- 7. ATOMKI
- 8. Annexes

OVERVIEW

Gamma and/or neutron irradiation of equipment, components and material can be carried out at nuclear installations introduced in this report. These organizations may be contacted directly, or irradiation programs could be organized and coordinated by the Radiation Safety Department of the Institute of Isotopes, Budapest.

Institute of Isotopes (IoI or IKI), Hungarian Academy of Sciences (HAS)

H-1121 Budapest, Konkoly-Thege Miklós út 29-33 Mail: H-1525, Budapest, POB 77 Phone: (361) 392 2222 ext.: 3162 (T. Biro); 1688 (R. Chobola); 3164 (A. Kovacs) Fax: (361) 392 2529

Major Irradiation Facilities

Gamma and X-rays

• Co-60 and Cs-137 sources (TBq/kCi) at the Institute of Isotopes Ltd., Budapest, the National Office of Measures, Budapest and the Atomic Energy Research Institute, Budapest (AEKI); X-ray machine at the National Office of Measures, Budapest

Electron beams; Bremsstrahlung and (X,n) secondary radiation

• LINAC 4 MeV electron accelerator at IoI, Budapest

Neutron beams

- Pu-Be sources at the IoI, Budapest and the AEKI, Budapest
- Training Reactor, Budapest Technical University, Institute of Nuclear Techniques
- Research Reactor, Atomic Energy Research Institute (KFKI-AEKI), Budapest
 - Thermal/fast horizontal channels (filtering possible), \emptyset 5 and 15 cm
 - Biological channel, thermal/fast (energy ranges can be varied by filtering), \varnothing 10 cm
 - Cold neutron channel, beam 10x2.5 cm, neutron energy around 5 meV

More data is given in Table below

Type of irradiation	Facility	Energy [MeV]	Flux density [n·cm ⁻² ·s ⁻¹]	Dose rate [kGy·h ⁻¹]	Irradiation space or beam size [mm]
	ОМН	0 - 0.3		n x 10 ⁻³	Ø = 113
X- rays	IKI LINAC	0-4		70 ?	$\varnothing = 50$
γ - rays	IKI Co-60 OMH Co-60	1.25 1.25		15 2 x 10 ⁻²	Ø180 x 300 Ø =113
	IKI Cs-137 OMH Cs-137 AEKI Cs-137	0.66 0.66 0.66		$5? 5 x 10^{-4} 0.01 3x 10^{-8}/1m$	$\emptyset = 50$ $\emptyset = 220$ $\emptyset 50 \times 15$ open $\emptyset = 100$
	KFKI-AEKI				
$n_{th,f} + \gamma$	hor. channels No 2 and 3	25 meV	$2x10^{9}$	0.03	Ø=150, 50
$n_{th,f} + \gamma$	hor. (Biology) channel No 5	25 meV +f	10 ⁸		Ø=100
n _{cold}	cold neutron channel	5 meV	10 ⁹		100 x 25 beam
$n_{th} + \gamma$	vertical channels	25 meV	$\sim 2 \times 10^{14}$	1700-2500	$\varnothing = 30$
$n_{\rm f}$ + γ	vertical channels	0 - 5	$2-3x10^{13}$	330-450	$\varnothing = 30$
$n_{th,f} + \gamma$	vertical channel "topaz"		?	?	Ø52x160
$n_{th,f}$ + γ	BME TR hor. channel	25 meV +f	10 ⁷	0.003	Ø = 80-90
$n_{th,f} + \gamma$	BME TR vert. Channel	25 meV +f	$3x10^{12}$?	Ø = 30 / 100
$n_{th,f} + \gamma$	BME irrad. tunnel	25 meV +f	$10^9 - 10^{10} / 10^9$	1.3-3300	400 x400
$n_{f} + \gamma$ p + Be	ATOMKI Cyclotron	0 – 16	5.0 x 10 ⁹	~ 0.6 (for TE)	In air, ~ 1 steradian around the zero degree direction; the volume is
$n_{f} + \gamma$ d + Be	horizontal beamline: No. 2	0 – 12	3.0 x 10 ⁹	~ 0.34 (for TE)	determined by the accepted inhomogenity of the field in the sample.

					in vacuum or in open air
Proton	ATOMKI Cyclotron	5 – 18	~ 3 x 10 ¹⁴ (~ 50 µA)		\emptyset = max. 15 (standing target)
Deuteron	4 beamlines for all:	3 – 10	~ 3 x 10 ¹⁴ (~ 50 µA)		\emptyset = max. 15 (standing target)
³ He ⁺⁺	horizontal: No. 2a, 6, 7 vertical: No. 7	8 – 24	~ 6 x 10 ¹³ (~ 20 µA)		\emptyset = max. 15 (standing target)
alpha		6 – 20	~ 6×10^{13} (~ 20 µA)		\emptyset = max. 15 (standing target)
γ-rays	ATOMKI Co-60	1.25		0.26 at 0.1m	in air ~ 4π

Legend

BME TR:	Training Reactor at Technical University, Budapest
IKI (or IoI):	Institute of Isotopes, Budapest
KFKI-AEKI:	KFKI, Atomic Energy Research Institute, Budapest
OMH:	National Office of Measures, Budapest
ATOMKI:	Institute of Nuclear Research, Debrecen

TE: medium equivalent with human muscle tissue

Note: The figures in the Table are typical or maximum values, for more detailed information the facility operator should be consulted

Measurement of radiation exposure

Neutron flux density/fluence and gamma dose-rate/dose measurements are performed regularly and also during the experiment. Results are documented. Radiation beams are usually monitored continuously. More information on the methods used is available on the web-sites of the relevant institutes:

www.iki.kfki.hu

www.kfki.hu

www.omh.hu

www.atomki.hu

Special expertise at the Institute of Isotopes, HAS

- R&D and applications of safeguards verification techniques
- R&D and applications of thermoluminescent and chemical dosimetry, with emphasis on high-dose dosimetry
- R&D in radiation chemistry and radiation damage
- R&D in Nuclear Physics; prompt gamma-activation analysis (PGAA by cold neutrons)

Selected Publications

A. Kovács et al.: Oscillometric and Conductometric Analysis of Aqueous and Organic Dosimeter Solutions; Radiat. Phys. Chem. 46/4-6, pp 1211-1215 (1995)

M. Osvay: Measurements on Shielding Experiments Using Al₂O₃:Mg.Y TL Detectors; Rad. Prot. Dosimetry, 66/1-4, pp 217-219 (1996)

J. Pálfalvi et al: Realistic Neutron Spectra for Radiation Protection and Other Applications at AERI, Budapest, Hungary; Proc. Int. Workshop on Neutron Field Spectrometry, 5-8 June 2000, Pisa, Italy, Nucl. Instr. Meth. A 476/1-2, pp 452-456 (2002)

G. Molnár et al.: A New Prompt Gamma-Activation Facility at Budapest; J. Radioanal. Nucl. Chem. 215/1, pp 111-115 (1997)

A. Fenyvesi et al: Results on photon and neutron irradiation of semitransparent amorphoussilicon sensors; Nucl. Instr. Meth. A 455, pp 361-368 (2000)

Subject index

Type of	Page	Type of	Page
irradiation		irradiation	
X-rays α -rays β -rays γ -rays n_{cold} $n_{thermal} + \gamma$	1/2, 3/1–5, 4/4 1/3, 6/2 1/1, 3/1-5, 4/2 1/2-3, 2/1-7, 4/2, 4/4, 6/4 1/1-2, 3/18-21 1/2, 3/6-17, 5/1-6, 7/2	$n_{fast} + \gamma$ $n_{thermal,fast} + \gamma$ proton deuteron ³ He ⁺⁺	1/2, 3/6-17, 5/1-6, 6/3 1/2, 3/6-17, 5/1-6 1/3, 6/2 1/3, 6/2 1/3, 6/2