

New progress in emergent pollutants degradation by UV photo assisted Fenton process

Laura Esquius
April 2012
Institut des Sciences et Ingénierie
Chimiques, GGEC, EPFL, Bât. CH, 1015
Lausanne, Switzerland
Prof. César Pulgarin

Index

- Introduction
- Objective
- Results and discussions
- Conclusions

Introduction

Advanced Oxidation Processes (AOPs)

- Competitive water treatment technologies for the degradation of those organic micropollutants which are not removed by biological treatments
- Techniques characterized by the generation of *radicals*, such as the hydroxyl radical (•*OH*)

Photo-Fenton

The main reaction is the one involving the formation of *hydroxyl radicals* from the interaction between ferrous ions and hydrogen peroxide with UV light:

$$Fe(II) + H_2O_2 \rightarrow Fe(III) + OH^- + HO^*$$

Introduction

Photo-Fenton at neutral pH

At neutral pH, $pH \sim 7 \rightarrow$ hydroxy complexes precipitate.

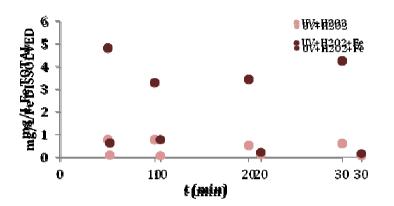
In presence of dissolved organic matter (DOM) \rightarrow polydentate ligands, can complex with ferric ions.

$$Fe^{III}(L)_n + hv \rightarrow Fe^{II}(L)_{n-1} + L_{ox}^{\bullet}$$

- Keep the iron soluble.
- Have *higher molar absorption* coefficients in the near-UV and visible regions than do the aquo complexes.
- Undergo via LMCT to the production of Fe^{2+} and a ligand radical.
- \rightarrow This *radical* can then react with O_2 leading to the formation of a sequence of oxidants $(O_2^{-\circ}/HO_2^{\circ}, H_2O_2, {^{\circ}OH})$.

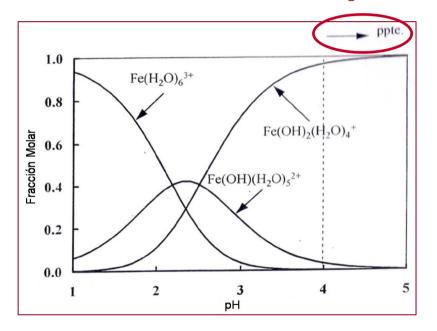
Objective

❖ Evaluation of the effect of reagents and water parameters such as oxygen and carbonates in photo-Fenton to achieve 80% of micropollutants degradation



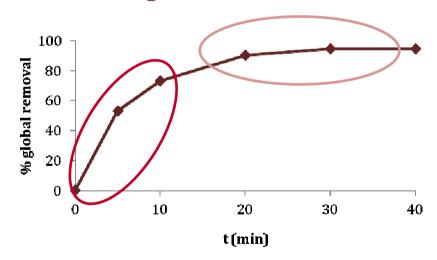
Effect of the differents components of photo-Fenton reagents

	UV	$UV + H_2O_2$ (10 mg/L)	$UV + H_2O_2 (10 \text{ mg/L}) + \text{Fe (5mg/L)}$
Pollutants degradation (30 min)	80 %	96 %	95 %

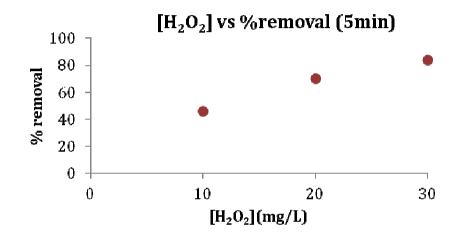

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

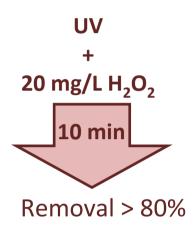
Iron evolution

$$pH = 6 - 7$$

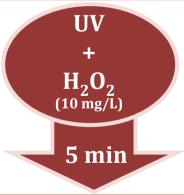


Effect of the differents components of photo-Fenton reagents


	UV	$UV + H_2O_2$ (10 mg/L)	$UV + H_2O_2 (10 \text{ mg/L}) + \text{Fe (5mg/L)}$
Pollutants degradation (30 min)	80 %	96 %	95 %

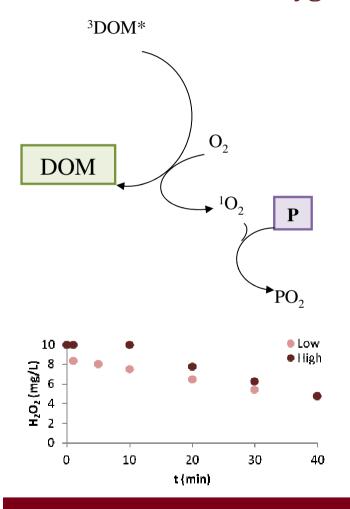

% global removal vs time

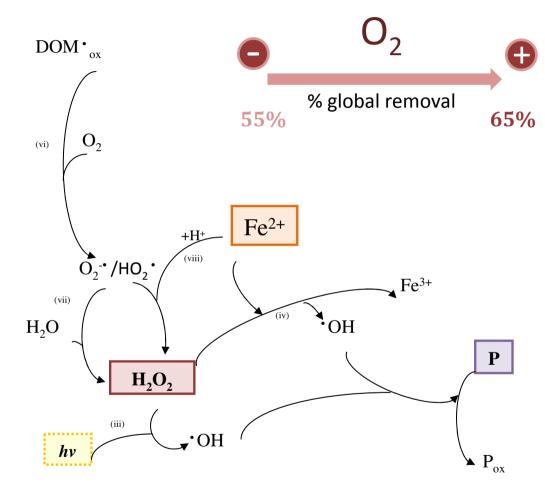
Hydrogen peroxide concentration


Different water conditions

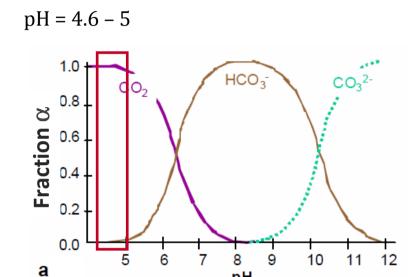
A	

		L		
٢			2	
•	•		•	


Time	9 a.m	11 a.m	1 p.m
рН	6	7.75	6.74
Transmittance (%)		57	66
Inorganic Carbon (mg/L)	30.16	69.13	17.84
Total Organic Carbon (mg/L)	5	12.67	5.57
Fe total (mg/L)	0.6	-	2
Fe dissolved (mg/L)	0.1	-	0



% global removal				
	88	59	46	


The influence of oxygen

The influence of carbonates

pН

✓ Carbonates are *hydroxyl radical HO* scavengers, competing the pollutants degradation.

Conclusions

- ✓ Iron is necessary but the addition working at neutral pH is inefficient
- \checkmark UV + H₂O₂ (20 mg/L) → 10 min → global removal > 80%
- \checkmark H₂O₂ increase the removal in the most economical way
- ✓ The presence of oxygen encourage the degradation
- ✓ Carbonates are hydroxyl radical HO• scavengers

Thank you for your attention

Laura Esquius
April 2012
Institut des Sciences et Ingénierie
Chimiques, GGEC, EPFL, Bât. CH, 1015
Lausanne, Switzerland
Prof. César Pulgarin